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Abstract

This project looks at using diagrammatic reasoning to prove mathematical theorems. The

work is motivated by a need for theorem provers whose reasoning is readily intelligible to

human beings. It should also have practical applications in mathematics teaching.

We focus on the continuous domain of analysis - a geometric subject, but one which is

taught using a dry algebraic formalism which many students find hard. The geometric nature

of the domain makes it suitable for a diagram-based approach. However it is a difficult

domain, and there are several problems, including handling alternating quantifiers,

sequences and generalisation. We developed representations and reasoning methods to solve

these. Our diagram logic isn't complete, but does cover a reasonable range of theorems. It

utilises computers to extend diagrammatic reasoning in new directions – including using

animation. 

This work is tested for soundness, and evaluated empirically for ease of use. We

demonstrate that computerised diagrammatic theorem proving is not only possible in the

domain of real analysis, but that students perform better using it than with an equivalent

algebraic computer system.
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“Oftimes Archimedes' servants got him against his will to the baths, to wash

and anoint him, and yet being there, he would ever be drawing out of the

geometrical figures, even in the very embers of the chimney. And while they

were anointing of him with oils and sweet savours, with his fingers he drew

lines upon his naked body, so far was he taken from himself, and brought into

ecstasy or trance, with the delight he had in the study of geometry.”  – Plutarch

“Soldier, stand away from my diagram.”

– Archimedes' last words (apocryphal)
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1 Introduction

Diagrams are commonly used in virtually all areas of representation and reasoning. In

particular, they are invaluable in mathematics texts. They are used in a variety of ways,

including to give examples showing why a theorem is true, to give counter-examples, or to

explain the structure of a proof. More rarely, diagrams can be used to prove a theorem

outright. Insight is often more clearly perceived in these diagrammatic proofs than in the

corresponding algebraic proofs. As Nelsen observes in “Proof without Words” , “ in English

'to see' is often 'to understand'” [37]. This project looks at using diagrammatic reasoning to

prove mathematical theorems. This chapter gives a brief overview of the motivation for this

project, the work achieved, and how it advances the field. 

The aims of the project were to develop a way of reasoning with diagrams suitable for doing

analysis proofs, and demonstrate its potential usefulness by building a prototype teaching

tool based on it. This was motivated by the belief that diagrammatic reasoning is more

intuitive for some domains. 

Although modern mathematicians give algebraic proofs, this work is frequently driven by a

geometric understanding. Barker-Plummer claims visualisation is a key aspect “not just of

mathematical learning but also [of] mathematical discovery” , and diagrams “play an

essential role” in this [1]. It is not surprising that geometry (and geometric reasoning) was

the original form of mathematics. For example, Pythagoras' Theorem was proved circa

17

Figure 1.1. This geometric proof of Pythagoras'

Theorem is a classic example of diagrammatic

reasoning.



500BC. The Pythagoreans' proof was lost, and as with anything relating to Pythagoras, it is

impossible to know just what was done, when and by whom. However, his proof would

almost certainly have been geometric [39]. The elegant proof in Figure 1.1 is due to an

unknown Chinese mathematician writing circa 200BC [37]. By comparison, algebra is a

recent invention, usually attributed to al-Khwarizmi in 830AD.1 The modern algebraic

formalism is barely a hundred years old, the result of the axiomatisation project of Hilbert,

Frege, Russell et al. A side-effect of that great project is that diagrams have fallen out of

favour as acceptable methods of proof. Only algebra is regarded as formal. The current

monopoly of algebraic formal mathematics is summed up by Tennant: “ [the diagram] is only

an heuristic... it has no proper place in the proof” [2].

This insistence on algebraic formalism is a curious position, as Barker-Plummer observes:

“most mathematicians deny that diagrams have any formal status, but on the other hand,

diagrams are ubiquitous in mathematics texts” [2]. Moreover their second class status may

well be detrimental, as Eisenberg and Dreyfus assert in a study on visualisation in

mathematics: “ it is our contention that students (and oftentimes their teachers too) cannot do

many of the [sample problems] because... the visual characteristics of the problems were not

even considered”  [8]. In the light of this, it is interesting to note that in al-Khwarizmi's work,

the use of algebra is justified with geometric proofs [39].

Given the advantages of diagrams and their widespread day-to-day use, it might seem

strange that the field has been so neglected, both in mathematical logic and in practical

computer work.

Fallacious diagrammatic proofs cast doubt on the validity of diagrammatic proofs. Worse

than this was the discovery of functions with completely unintuitive behaviour, such as

space-filling curves. Diagrammatic reasoning came to be considered unreliable and not

rigorous enough for mathematical proof. We believe that computers can be used to eliminate

these problems.2 Combining the computer's 'immunity' to optical illusions with the rigid

structure imposed by automated reasoning techniques should allow us to give guarantees of

soundness in diagrammatic proof.

1 One could argue it began with Diophantus circa 250AD, but this does not affect our point.
2 After all, human reasoning with algebra can also have errors. c.f. [32] for examples of some subtle

ones.
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There are also pragmatic reasons why diagrammatic reasoning is not as well developed as its

sentential3 counterpart. Although formal logic was invented as a branch of pure

mathematics, it found very successful applications in the design of computers and programs.

This drove further development of the subject. Diagrams are mainly important to

understanding – and they could still be used for this in mathematics without a formal theory.

Thus there was no equivalent motivation for developing diagrammatic reasoning.

Computers are now common-place, and programmers can no longer expect their users to be

experts. This, combined with increases in computing power which have made the overhead

of graphics much less prohibitive, means that for most 'desktop' software, HCI4 issues are

now more important than straight computational ones. Comparing current day GUIs5 to the

rich visual representations used in non-computer based work – such as circuit diagrams,

flow charts or architectural floor plans – shows the potential for improvement. However,

although 'paper' diagrams are currently more versatile and sophisticated, computers have a

lot to offer. Computer graphics tools give fast and accurate drawing, which could make

complex and intricate diagrams much easier to use.

There is also the exciting possibility of developing diagrams in new ways. Diagrams on

paper are necessarily static. If we consider the very real differences between text and

hypertext, we see that diagrammatic reasoning on computers needn't be just a straight

conversion of diagrammatic reasoning on paper. Possible directions include the use of

animated or interactive diagrams. A theoretical underpinning for such work is clearly

desirable.

Developing a diagrammatic logic for theorem proving is therefore interesting on two fronts:

as a useful tool for computer-aided mathematics, and to investigate the nature of

diagrammatic reasoning (where the rigour required for doing mathematics will force a

thorough investigation of the mechanics of such reasoning).

3 Sentential: involving sentences. Synonymous here with algebraic or textual.
4 HCI: Human Computer Interaction 
5 GUI: Graphical User Interface
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1.1 Real analysis
The domain we will investigate is that of theorem proving in real analysis and Euclidean

space analysis, and in particular, those theorems which involve a continuum of different

cases. For those unfamiliar with analysis, [27] provides an excellent introduction. Ours is

the first attempt to apply a visual approach to this domain since Maclaurin tried back in the

18th century to put the calculus on a rigorous basis using geometric reasoning. He failed

[39]. We are proposing to re-attempt that undertaking, but with the vast advantage of 250

years of mathematical and computer development to draw on.

A continuous domain was chosen because – in the right circumstances – a continuum of

cases can be understood as if they were a single case. This is because there is often a smooth

transition from one case to another. It suggests that representing them with a single diagram

will be viable.

Historically, Euclidean space analysis is a generalisation of real analysis, which was

developed to justify the use of calculus. � 3 was meant to be the real world, and the

definitions were supposed to capture how the universe works. Arguably most of the work

went into coming up with the right definitions. As the universe is a geometric place, it is not

surprising that many of the concepts are best understood geometrically. The traditional

algebraic formalism is often confusing to students meeting it for the first time [53]. Even

great mathematicians such as Cauchy have made mistakes in this subject [32][28].

Therefore, this domain should give a good demonstration of these ideas, letting us replace

complex algebraic formulations with the geometric concepts they represent.

The domain includes � (the line) and � 2 (the plane), which means that we can, in places,

draw examples of the objects we are reasoning about.6 Barwise & Etchemendy argue that

the power of diagrammatic reasoning comes from allowing representations that share

structure with the target domain [3]. Allowing objects to represent themselves – the extreme

form of sharing structure – is therefore very promising.

6 As we examine in §3.1.3, such drawings are really approximations of examples.
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1.2 Motivation: overview
1) Investigate a new form of logic.

Research is required to find out how diagrammatic logics can work.

2) Develop diagrammatic reasoning in new directions

The use of computers opens up new realms of diagrammatic reasoning - such as

animated diagrams and interactive diagrams.

3) Improve Human-Computer Interaction in mathematical tools

Since diagrams are such powerful tools in human communication, they have a rich

potential for aiding HCI.

4) Develop new teaching aids for mathematics

People find analysis and related subjects very hard to understand. We think this is

largely due to the dry algebraic nature of the formalism which hides what are “ fairly

simple'' geometric ideas.

The assumption underlying this project is that, for some domains, diagrammatic reasoning is

easier to understand for a significant number of people. 

1.3 Project aims
The overall aim of this project is to investigate the potential for applying a diagrammatic

approach to mechanised reasoning. Since there has been little research to date in this area,

and none in the domain we focused on, the first stage of the project was exploratory. Its aim

was to develop sufficiently powerful diagrammatic techniques to tackle analysis problems.

The techniques developed should then have a practical application in mathematics teaching,

where, we hope, they will complement conventional methods (although any such application

is beyond the scope of this project). 

Hence this project has two goals:

1) To develop a formal logic that uses diagrammatic reasoning to solve problems in real

analysis.

2) To make a case for this logic having advantages over the conventional algebraic

approach.
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1.4 Thesis overview
We now look at the layout of this thesis, giving a chapter-by-chapter overview.

1) Introduction (this chapter)

Describes and motivates the problem we tackled.

2) Literature Survey

Gives a broad survey of the field and where this work fits in. Diagrammatic reasoning

research is still in its infancy, and this work is new in several respects. The domain we

look at has not been tackled before diagrammatically. Although some of the problems

involved have been analysed already, the domain we consider presents considerable

challenges, requiring new solutions.

3) Diagrammatic Reasoning: Problems & Challenges

Discusses the problems presented by diagrammatic reasoning, including roughness of

drawing, ambiguities, handling quantifiers, disjunctions and generalisation.

4) A Diagram Logic for Analysis

This chapter forms the 'core' of this thesis. It gives examples of our reasoning style. It

then sets out the methods used for representation and reasoning, and explains how they

work. This is done both informally and formally.

5) Soundness

This chapter shows that the logic described in the previous chapter is sound. This is

based on a two-level analysis. Firstly we look at the link between physical diagrams and

abstract diagram-descriptions, then we consider the soundness of rule application and

diagrammatic proof at an abstract level. A conversion function is given for diagram rules,

allowing us to compare our rules with the standard definitions.

6) Evaluation

This chapter analyses the capabilities and limitations of the logic. We evaluated our work

against the hypothesis: “Diagrammatic proofs are possible for analysis problems, and

may be easier (in some sense) than algebraic reasoning” . This involves evaluating

coverage of the domain and ease of use. An empirical study was conducted to evaluate
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the potential of this work for teaching mathematics. This chapter also describes the

interactive theorem prover, called � � �� � � � �� , built to implement our ideas.

7) Related Work

This project is then compared with similar research: Jamnik's DIAMOND system, and

Howse et al's work with Spider Diagrams.

8) Future Work

This chapter looks at how this work can be extended, and the potential benefits of doing

so. It focuses on extensions within our target domain (such as reasoning about

sequences), but also considers how ideas from this project might be applied to other

areas (e.g. interactive program generation).

9) Conclusion

This chapter draws together the various threads of the project into a glorious tapestry,

and considers the meaning of this work from a wider perspective. It delivers a

devastating indictment of the current corrupt and degenerate state of work in the field,

but concludes with a message of hope: a shining vision of a future built on brotherhood,

justice and diagrammatic reasoning.

	 Appendix A: Rule set with soundness proofs

	 Appendix B: An example of diagrammatic reasoning with sequences

	 Appendix C: Some example proofs

	 CD-ROM

This provides illustrations and hands-on examples for chapters 4 and 6. It contains a

version of the � � �� � � � ��  software, and an electronic copy of this document.
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2 Survey of the Field

This chapter gives a broad survey of the field and where our work fits in. It covers

theoretical issues, different representation schemes and existing diagrammatic reasoning

systems. 

We examine attitudes towards diagrammatic proof. For a long time, diagrams were

considered unsuitable for rigorous mathematical proof. However, recent work on

formalising diagrammatic systems has changed opinions – though the issue remains slightly

controversial.

Within the diagrammatic reasoning community, it is often taken as self-evident that

diagrams are easier and/or better for people to reason with than text. However diagrammatic

reasoning is not always superior to sentential reasoning. The best approach depends on both

the problem and – which is often overlooked – the person.

Diagrammatic reasoning research is still very much in its infancy, and there are many

unanswered questions. In particular, there is no comparable work for the domain of

mathematical analysis which we tackle. However diagrammatic reasoning is attracting

increasing attention, and there are a considerable number of diagrammatic reasoning

systems, including: the Geometry Machine [55], “&” /GROVER [2], HYPERPROOF [16] and

DIAMOND [24], and the work on Constraint Diagrams [11].

2.1 Theoretical discussions

2.1.1 What is a diagram?

There are numerous different definitions in the literature for what counts as a diagram.

Fortunately, it seems research in the field has moved on from this semantic chimera. Whilst

a 1995 round up of the field contains a host of discussions on this question, the Diagrams

2002 conference did not mention it once [62][64]. For the purpose of this thesis, we will
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take a broad view, considering diagrams to include heterogenous representations that mix

visual elements and text.

2.1.2 What are the advantages of diagrammatic reasoning?

In the introduction we claimed that diagrams are more intuitive and easier to understand

than algebra. This seems a straightforward claim, and certainly there are many areas where

this is uncontroversial. For example, we would not find many electricians who describe

circuits without diagrams. Over 50% of the cortex in primates is devoted to visual

processing [43], and so it is not surprising that people find visual representations and

operations natural to use. Some of the advantages that have been claimed for diagrams are:

	 Diagrams implicitly represent complex relationships, alleviating problems that occur

when the number of elements and connections exceeds short term memory [21].

	 Diagrams make the abstract concrete [21].

	 Diagrams “help learners build runnable mental models”  [33].

	 “Diagrams automatically support a large number of perceptual inferences, which are

extremely easy for humans.”  [48].

However there is evidence that diagrams are not the best method for all students. In an

experiment on learning about mechanical systems, Heiser & Tversky found that subjects

with low mechanical ability performed better with textual descriptions than diagrams [18].

In the domain of teaching logic, Stenning et al's studies of HyperProof show that some

students perform better using HyperProof without diagrams [51]. They conjecture that

students use one of two styles of reasoning: spatial or algebraic. They link these with a

serialist approach and the use of algebra, or a holistic approach and the use of diagrams.

Teaching a student using the wrong type of method results in poor performance. A study of

syllogistic reasoning, comparing the use of Euler circles against a sentential technique,

found a similar pattern [38].

The evidence is not conclusive yet. The results of some of these experiments were “not

significantly correlated” [51]. It is also very hard to separate out the ability we wish to test

from other mental processes that could be involved. For example, Stenning et al use the

'Paper Folding Test' to measure spatial reasoning ability, but concede that it may in fact be

measuring the ability to translate verbal problems into spatial form [38]. Finally, their work
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has so far compared only a very small sample of reasoning methods (HyperProof with and

without graphics, and Euler Circles versus Natural Deduction). It is possible that the

differences between student reasoning styles are more complex. There are other aspects of

representations that can affect reasoning style besides the diagrammatic/algebraic

distinction. For example, Venn Diagrams and Euler Circles are two diagrammatic methods

for the same domain which give rise to quite different reasoning styles.7 A study of student

learning patterns between these would be of interest here. There may also be effects

associated with learning multiple representation methods, rather than any single method.

What research in this area definitely shows is that there are wide variations between

students. These variations suit different styles of reasoning, which mathematics teaching

should take into account [53]. In the case considered in this project – that of teaching

mathematical analysis – current teaching practices generally ignore these variations. In spite

of the fact that analysis concepts are mostly geometric, the normal approach is heavily

biased towards algebraic reasoning. This is because experience has taught that the subject

requires rigorous care. Conventionally, only algebra is regarded as being sufficiently

rigorous.

Good and bad diagrams

Just as some sentences work better than others,8 some diagrams are better than others. What

makes a good diagram is an interesting and difficult question.

It is perhaps illustrative to give an example of how poor diagrams can come to be developed.

Many diagram systems are quite limited in the scope of what they can represent. The easiest

way to extend a diagrammatic representation or reasoning scheme is by introducing new

notation. This can produce systems as powerful as any logic. However, it generally leads to

more complex diagrams, and great care is required if these are to retain their intuitive feel.

For example, in 1976 Schubert, starting from semantic nets, developed (by adding more and

more notation) a diagrammatic representation that is as expressive as modal lambda calculus

(see Figure 2.1 and Figure 2.2) [44]. Unfortunately, the resulting diagrams are extremely

difficult to read and, to the best of our knowledge, were not generally used.

7 Mistakes with Euler Circles will probably come from missing cases, whilst with Venn Diagrams,
extracting the conclusion would seem to be the hard part.

8 See text for examples.
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Horn explores diagram design, developing various guidelines for good design [21]. He finds

that there is “very little rigorous research” on the subject, although in places he draws on

ideas from psychology studies. His suggestions include using colour, similarity, proximity,

continuation and enclosed regions to convey information. Graphical features such as

contrast or size can also be used to focus attention on key parts of a diagram, but it is

important not to overload a diagram with too many such focus points.

When designing a new diagrammatic representation scheme there are several factors that

should be taken into account, such as who will use it (laymen or experts) and what role it

will play (e.g. active reasoning, or communicating data). There are trade-offs between

clarity, expressive power and the learning curve for users.
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Schubert diagram means.
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are playing in the sandbox”



2.1.3 Can diagrammatic proof be formalised?

Although diagrams are ubiquitous in mathematics texts, many logicians deny that diagrams

have any formal status [2]. This can perhaps be attributed to the success of Hilbert, Frege,

Russell et al in formalising algebraic methods, and the lack of an equivalent body of work

for diagrams.9 In [13], Greaves argues that “ the familiar prejudice against diagrammatic

inference in logic and geometry owes more to history and philosophical context than to any

technical incompatibility with modern theories of axiomatic systems” . 

Shin's work on formalising Venn diagrams seems to have shifted opinion on this [46]. Other

formalisations of diagrammatic systems have followed, e.g. [22] or [14]. By treating

diagram objects as objects in � 2, properties about their basic behaviour can be proved

(namely that curves can be used to define regions, and the transitivity of the inside relation

for such regions), and from this a formal system can be built up with well-defined syntax

and semantics. Properties of the representation (e.g. completeness within a domain) and

reasoning rules (e.g. soundness) can then be proved in the same way as for sentential logics.

There remains the question of how valid it is to equate curves in a diagram with curves in

� 2. The literature typically ignores this issue, tacitly assuming that the translation from

paper to � 2 does not cause problems.10 As we explore in §3.1.3 and §5.3, this issue does, in

fact, create some theoretical difficulties, and could potentially lead to mistakes. In particular,

inside/outside relations can change when a curve in � 2 is physically drawn. However, these

problems only affect extreme cases, and we will show in §5.3 that this issue can be dealt

with in a rigorous way. 

Proving properties of a diagrammatic reasoning system from the geometry of the drawing

plane is an arduous task though. Moreover, Venn diagrams use only closed curves, regions

and points, which are relatively simple to treat mathematically. The addition of more

complex representations (e.g. with dotted lines, arrows, etc.) would make this standard of

proof much harder. Hence it is not surprising that other work on the soundness of

9 Interestingly, although Hilbert's “Foundations of Geometry” turned Euclidean geometry into a
formal algebraic logic, some of his proofs do involve diagrams, in that there are necessary
conditions which are only ever stated in the diagrams accompanying the proofs [34]. Also, Frege's
original notation had diagrammatic features.

10 Several formalisations cite the beneficent presence of the Jordan Curve Theorem when justifying a
diagrammatic system (e.g. [15]). Quite how the rather precise and technical theorem “Continuous
injective images of [0,1]/{ 0=1} into � 
 � are homeomorphic to � x� � :� x�
 1� ” relates to
actual diagrams is usually left as an exercise for the reader. Note that the Jordan Curve Theorem
does not necessarily hold for surfaces that approximate � 2 (e.g. � x� ). * * ?? This bitchy little aside is prob. unnecessary.
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diagrammatic reasoning (e.g. [14]) has typically assumed that diagrams can be reliably and

properly parsed, and shown soundness at the interpretation level.

Recent critics of computerised diagrammatic reasoning include Penrose, who claimed it is

not possible to automate certain diagrammatic proofs – specifically number theory proofs

involving intuitive leaps to generalise from the diagram to the proof. However Jamnik's

DIAMOND system is capable of proving such theorems11 [24], so these objections no longer

seem valid.

Generalisation

More recently, Hayes raised questions about whether we can systematically generalise

diagrammatic proofs of geometry theorems [17]. He showed that a diagrammatic proof can

give rise to several valid generalisations. The different generalisations depend upon which

aspects of the diagram are judged to be important. Clearly this phenomenon presents a

problem for a diagram logic.

However the process of formalising a logic involves setting out an explicit method for

generalisation, which removes this problem (c.f. §4.2.3). Essentially, formalisation restricts

how diagrammatic reasoning is meant to function. Removing the problem in this way though

raises the possibility of creating a logic that is sound but misleading. That is, although only

one generalisation would be valid under the rules of the logic, users might be tempted by

their intuition to assume a different, invalid, generalisation. 

Hayes argues that people intuitively know which generalisation is meant, using principles

similar to Grice's conversational maxims (e.g. “Do not make your contribution more

informative than is required.” [54]). As an example, he gives the triangles in Figure 2.3,

which he claims suggest generalising to “All triangles” , “All right angled triangles” and “All

right-angled isosceles triangles” respectively. The idea that Grice's maxims can (where

relevant) be applied to diagrams – which I agree with – has implications for the design of

diagram representations.

11 Penrose's actual example involved 3D reasoning, which DIAMOND does not cover. However the
nature of the reasoning is no different from that of the 2D proofs which DIAMOND does cover.
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2.2 Representation schemes

2.2.1 Direct and indirect representations

Diagrammatic representations are by their nature quite specific, however the level of

specificity varies. We introduce the term direct to informally describe the degree of this. A

more direct diagram is one where the representation used is closely linked to its meaning.

For example, drawing a triangle to reason about triangles. By contrast, an indirect diagram is

one where the relation between sign and meaning is arbitrary, and based on convention.

Constraint diagrams are an example of this, where a dot can represent anything from a

spatial point to a person [11]. Textual representations12 are always indirect. 

In general, the closer the link between signifier and signified13, the more specific the

representations are (i.e. more direct diagrams tend to be more specific). Specific

representations lead to the generalisation problem described in §2.1.3. Also, it seems that

the more specific the representations are, the harder it is to properly perform universal

quantification. This is because there is extra information that the user must ignore. For

example, it is easier to reason with ‘ let X represent any man...’ than ‘ let the late Jon

Barwise, who had fading brown hair and contributed so much to diagrammatic reasoning,

represent any man...’ . 

12 We do not count as textual, representations such as ASCII art or rebuses (groups of letters,
numbers or pictures that represent words or phrases) where the font and spatial arrangement of
letters is important.

13 A signifier is the method (e.g. a word or picture) used to represent a concept (the signified);
together they make up a sign [9].
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isoceles triangles).



Nevertheless, specific representations do seem to have strong advantages, as discussed in

[10] and [49]. A strong link between the signifier and the signified allows people to mix

semantic inference mechanisms such as model-checking with syntactic reasoning. This leads

Chandrasekaran to characterise diagrammatic reasoning as a type of 'model instance based

reasoning' [7]. Of particular relevance to this project, more direct diagrams give

representations for geometric objects that are both very natural and seem to lend themselves

well to diagrammatic reasoning. 

Our domain is in geometry, hence we have adopted a system based on fairly direct diagrams.

This gives us quite natural representations for many of the objects in the domain.

2.2.2 Diagrams and geometry

There is of course a long history of using diagrams in geometry – dating back further than

reliable records [39]. Diagrams are routinely used in all areas of geometry, from abstract

arrow chasing in topology, to sketches of concrete examples in mechanics.

Of particular relevance is the use of diagrams in teaching analysis. There have been a great

many text books written on the subject of mathematical analysis, and it is not possible for us

to survey even a fraction of them. No doubt most of them will use diagrams at some point,

typically to illustrate concepts. This means that there are existing informal representation

schemes which we can draw on, some of which are used on a wide enough basis as to

constitute de-facto standards. We will use several established representation methods:

	 Representing functions f:� ® �  by plotting a graph against horizontal and vertical axes.

	 Representing functions between other spaces using arrows.

	 Representing function application using arrows.

	 In the high-school subject of loci-shading, shapes that do not include their borders are

drawn using dotted lines. We will adapt this to represent open sets.

However, so far research on formal diagrammatic representations for geometry has focused

on ruler-and-compass Euclidean geometry. We are unaware of formal diagrammatic

representation schemes being developed for other aspects of geometry.
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2.2.3 Representing quantifiers

One of the difficulties in extending diagrammatic reasoning beyond ruler-and-compass

geometry is representing and reasoning about quantifiers. Since quantifiers are not related to

any property of an object, or its relations to other objects, there is no obvious way in which

to represent them. Most diagrammatic representation schemes do not cover quantifiers, and

Schubert's scheme (c.f. §2.1.2) gives an example of how they can be problematic. One

successful diagrammatic system with quantifiers is Howse et al's constraint diagrams,

which are an extension of spider diagrams [11]. Constraint diagrams are an indirect

representation for logical relations, and as such, they are very different in appearance to the

logic we will develop here. Nevertheless, there are similarities at a structural level. A

detailed comparison between our representation scheme and constraint diagrams is given in

§7.2.

2.3 Existing diagrammatic reasoning systems
Most diagrammatic reasoning systems fall into two categories: those that use diagrams to

guide an algebraic proof (which we call 'diagram guided theorem provers'), and those that

convert diagrams into a high-level symbolic description and base inferences on this

('diagram interpretation theorem provers'). There are also a number of computer tools for

visualising geometry problems (e.g. CINDERELLA [41]). However these are generally not

designed for theorem proving.14

2.3.1 Diagram guided theorem provers

The Geometry Machine

Gelernter's Geometry Machine (GM) is an example of the first category15 [55]. It finds

axiomatic proofs for Euclidean geometry theorems, using a diagram as a model to prune the

search space. Branches in the search that are false in the diagram need not be further

explored since they cannot lead to a proof. The GM was an early AI success, but not

powerful enough to handle 'serious' problems [55]. However the basic idea of the GM

14 CINDERELLA does contain a theorem prover, but it is an algebraic one for checking user input. The
user never sees the proofs.

15 Although it also performs a little diagram-interpretation, with some simple facts being read off the
diagram.
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appears, to a greater or lesser extent, in many other systems. In particular, Goldstein's Basic

Theorem Prover is essentially an extension of the Geometry Machine [55].

“ &” /Grover

An often cited modern system is “&” /GROVER, developed by Barker-Plummer, Bailin, &

Ehrlichman [2]. This is a dual system of a diagram based proof planner (GROVER) and a

standard theorem prover (the sequent calculus system “&”) which applies diagrammatic

reasoning to set theory – a non-geometric domain. Instead of using the diagram as a model,

it is used to generate proof plans. Figure 2.416  ?  ?  shows such a diagram. This reflects the

authors' belief that diagrams carry 'meta-information' about a proof, such as the strategy or

constructions to be used. Whilst this is a good idea in principle, GROVER relies too much on

the user. The user must supply the diagram and convert it to a propositional description in

order to input it – the program does not directly deal in diagrams. The user also has to verify

the conversion of this description into logic statements. Moreover, GROVER diagrams are very

specialised. They require the user to have expert knowledge of the system, plus a good

understanding of the proof to be automated.

Summary

The Geometry Machine was very impressive for 1960. Gelernter's idea of using models to

prune the search space has since been generalised to the algebraic method of 'semantic

resolution' [55]. Model-checking provers based on diagrams do not seem to have moved on

significantly from the Geometry Machine. Nor is it clear what purpose they now serve.

16 Schröder-Bernstein theorem: “ If |A| �  |B| and |B| �  |A|, then |A| = |B|”  – but for A, B infinite.
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Their output is an axiomatic algebraic proof; no more readable than comparable algebraic

systems. The diagrams-as-proof-plans approach taken in “&” /GROVER also looks

unpromising. It does not have the flexibility of proof planning systems, since a new diagram

is required from the user for each theorem.

2.3.2 Diagram interpretation theorem provers

Diagram interpretation is a more promising category and has found some applications in

graphical interfaces. However there is not a generally accepted way of interpreting diagrams

[16], and different approaches result in different systems.

Visual languages

Perhaps the most cohesive body of work here is that done from a Natural Language

Processing background. Various systems, such as PENGUINS, DIAGEN, and GENED have been

developed [35]. They are generally designed for understanding and checking user generated

diagrams. The envisioned application for such systems is not as theorem provers, but as

intelligent front-ends [36].

HyperProof

Barwise & Etchemendy's HYPERPROOF currently sets the standard for educational applications

of theorem provers [16]. It is aimed at philosophy students learning logic, and uses the

blocksworld domain so that propositions can be given visual meaning. The system is

multimodal, mixing diagrammatic and sentential representations and reasoning.

Diagrammatic inferences in HYPERPROOF involve reading information from the diagram, or

testing propositions against the diagram.
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Fleuriot

In a promising crossover between geometric reasoning and geometric theorem proving,

Fleuriot applied point-elimination methods from geometric theorem proving (extended to

allow infinitesimal geometry) using the interactive system ISABELLE to prove the theorems of

Newton's Principia in a geometrical manner [8]. This produced rigorous proofs from

Newton's 'informal' ones.

Geometric theorem proving (GTP) involves using algebraic techniques (normally based on

manipulating polynomials) to prove geometric theorems [55]. These techniques are very

powerful – typically complete for universally-quantified conjectures in complex-valued

geometries. Although these techniques can be based on geometric properties – as is the case

with Fleuriot's work – GTP is quite different from diagrammatic reasoning, and the proofs

are not particularly readable.

Fleuriot's work used non-standard analysis, which differs from e-d analysis in containing

infinitesimal numbers (i.e. � x such that " n, 0 < x < 1/n) and (non-equal) infinite numbers. It

has been claimed that this is more intuitive [30]. My personal feeling is that non-standard

analysis is more appealing in principle than in practice. Although non-standard analysis

rehabilitates the (fairly) intuitive idea of infinitesimals, it introduces other difficulties (e.g.,

care is required with the different types of hyper-reals). Moreover, it is rarely taught.
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Other systems

There are plenty of other systems that perform some form of diagram interpretation –

including several formalisations of Venn diagram reasoning. Other approaches include

Koedinger & Anderson's Diagram Configuration (DC) system. This was developed from a

psychology/cognitive science perspective. The DC system is based on empirical data from

observing the methods used by human experts to interpret geometry diagrams. It organises

data into chunks representing key features from the diagram (e.g. triangles). This is

processed by built in schemas (e.g. a right angled triangle schema), which can be thought of

as inference rules. A back-chaining search for a proof is conducted by these schemas [24].

2.3.3 Dynamic reasoning systems

In all of the above systems, the diagram plays a static role. It is presented to the system as

part of the initial input. The reasoning process uses a single diagram, and cannot modify any

aspect of the diagram it is given. This approach matches – and is probably based on – the

use of diagrams in text-books, and is quite different from algebraic (or, more generally,

verbal) reasoning, which is a chain of logical steps forming an argument. However when

people use diagrams in everyday situations, the diagram is often not static. The process of

drawing the diagram can be important. It is not unknown for a diagram to become an

unreadable mess by the end of the process, and yet still have served its purpose.

With algebra, the reasoning steps form a chain, but diagrams can be modified in situ.17

Sloman sees this as a cognitive advantage, reducing the load on working memory [50].

Under this view, the static diagrams in text-books are simply the final diagrams in the

reasoning process. The end diagrams alone are given because they contain all the

information, and it is easier to replay the reasoning on a single diagram than to flick through

a comic book chain of evolving diagrams. Hence Sloman argues that “what [logic/verbal

reasoning and visual/geometric transform reasoning] have in common is probably more

important... than the differences” .

It is the dynamic use of diagrams that we will explore. There are only a very few systems at

present that reason dynamically with diagrams. All of them use very different reasoning

techniques, yet these techniques are not necessarily incompatible. We present an overview

17 There are some exceptions to this rule where algebra is modified in situ, such as cancelling terms in
an equation by crossing them out.
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of the main systems here, and a more detailed comparison with the system developed in this

project in §8.

Diamond

Jamnik's DIAMOND system is one such system [25]. DIAMOND uses geometric reasoning about

area to prove natural number arithmetic theorems. The user supplies proofs for example

cases of a theorem, and from these examples a general proof is extracted and checked. The

extraction process is symbolic, but the specific case proofs are done using entirely

diagrammatic reasoning. Potentially it would be possible to automate the interactive element

as a search with these geometric actions.

This project was initially conceived as extending Jamnik's work to a continuous domain. We

view diagrammatic reasoning in a similar way, using example proofs for specific cases.

However the differences between countable domain and continuous domain reasoning have

led to a very different type of system. §7.1 gives a detailed comparison of this project and

DIAMOND.

Hammer

Also in this category is a flawed logic developed by Hammer that mixes diagrams and

sentences [14]18. Hammer's work builds on that of Shin in Venn diagrams. He extends this

with extra notation and some inference rules to give a heterogenous logic as expressive as

first-order predicate logic. This was shown to be sound and complete. His work has several

similarities to our own, including proofs formed from a sequence of diagrams, and the use of

proof by contradiction. It is therefore of interest as it illustrates some pitfalls in formalising

diagrammatic reasoning:

1) Hammer's definitions are slightly careless, and admit certain 'pathological' cases.19 This is

very hard to guard against.

2) The meanings of the augmented diagrams are not particularly intuitive.

3) The inference rules are algebraic. That is, they are formulated and presented

algebraically, and it is not clear that this could be done diagrammatically.

18 Hammer has since produced more appealing work ([15]), but it isnot as closely related to the logic
we develop here.

19 For example, Hammer's definitions speak of 'continuous closed curves', which allows space filling
curves that do not have the properties he requires.
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4) The inference rules cannot be directly applied (as formulated), but are instead used to

verify that an inference step is correct. These steps are not intuitive, and without specific

training many people might find them hard to understand or carry out.

The result is that it is probably harder to understand a proof given using his logic than a

purely sentential one. To the best of my knowledge, it was never implemented.20 It is thus

hard to see what purpose Hammer's logic serves, except as an intellectual exercise, and as a

warning that there are no automatic benefits to using diagrams. By extending diagram

systems on purely logical criterion without considering ease-of-use issues, the final logic

lost the very qualities that make diagrams attractive.

20 As Ambrose Bierce's inventor said: “ I have demonstrated the correctness of my details, the defects
are merely basic and fundamental”  [4].
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Mondrian

Another system relevant to this project is Lieberman's MONDRIAN. This is not a theorem

prover but a drawing program that can learn from examples [29]. Essentially, it is just a

macro recorder, however it has similarities with the logic which we develop. These are:

	 Drawing tools are presented by giving an example before/after transformation.

	 General purpose tools are defined by working with specific examples.

Other proposals

Meyer suggested coupling a visual language parser with a rewrite rule engine to create a

diagram-based theorem prover for Euler Circles [35]. Such an approach is potentially more

powerful than the redraw rules we consider (c.f. §4). The visual language framework would

allow the rewrite rules to act at any level of abstraction. By contrast, the rules we consider

can act at only one level, which is set by the diagram matching relation. Rewriting at an

abstract level of description poses problems though for converting back into diagrams. A

positive advantage of our approach is that the redraw rules are themselves diagrammatic.

There is, thus, a natural, and hopefully intuitive, way of presenting them to the user. Visual

language productions and arbitrary rewrite rules would not necessarily have clear

diagrammatic interpretations.

2.4 Summary
Diagrams can be a powerful method of communication. However they are neither

automatically nor universally so. Even a good diagrammatic technique may not be suitable
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for all students, and a bad diagrammatic technique is less intuitive than algebraic methods.

The focus should be on developing not just sound but intuitive reasoning techniques.

Consideration of cognitive issues and frequent testing of representations and techniques on

potential users should help with this.

Until recently, diagrams were considered unsuitable for rigorous mathematical proof, and

this issue is still slightly controversial. Formalising diagrammatic reasoning presents

problems beyond those of normal logic. However there is no reason why diagrammatic

reasoning cannot be as rigorous as algebraic reasoning.

Diagrammatic reasoning has a long history in AI, dating back to Gelernter's Geometry

Machine of 1960. After a period of neglect, the field has recently begun to attract serious

attention again. However there are no dominant trends yet, and research continues in many

directions. No work has been done in the domain that we wish to develop. Nor is there an

existing system that appears suitable for adaptation.
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3 Diagrammatic Reasoning:

Problems & Challenges

This chapter continues and concludes the discussion on the problems involved in using

diagrams in formal mathematics. It shows that developing a diagrammatic logic that is both

powerful and sound is a daunting task. The challenges we identify here serve both to explain

and motivate the hard work of the next chapter. In the previous chapter we looked at the

question of whether diagrammatic reasoning can be formalised, and covered the most

important and relevant related work. This included a discussion on generalisation in

diagrammatic proofs. However there are other potential problems in using diagrams for

theorem proving – mainly related to the need for absolute certainty – that were not covered.

These include:

	 Impossible drawings (i.e. drawings of non-existent objects)

	 Optical illusions (i.e. drawings that trick the mind into seeing them inaccurately)

	 Roughness of drawing – which prevents us from accurately drawing geometric objects

	 Drawing mistakes

	 Ambiguous drawing (i.e. drawings with more than one interpretation)

After examining these problems, we then show that sentential reasoning suffers from

analogous potential pitfalls, albeit often in less severe forms. Hence whilst the problems

discussed here are more acute for diagrammatic reasoning, they should not discourage us

from developing diagrammatic logics.

We also look at why diagrammatic reasoning in analysis presents new challenges. These

include representing disjunctions and negation, using contradiction and handling quantifiers

– all of which require new solutions to those used in sentential reasoning.

Although this chapter makes general points where possible, the discussion here is both more

technical and more specific to our reasoning method than in the previous chapter. In places
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we will 'look ahead', outlining solutions which will be developed properly in later chapters.

We focus on direct representations, where there is a strong link between diagrams and

models, and primarily on 'geometry diagrams' where lines, points and curves in a diagram

are used to represent lines, points and curves in the real plane � 2. There is a very natural

mapping in geometry diagrams between domain objects and diagram objects. As we shall

see though, this does not mean that creating a sound formal logic will be straightforward.

3.1 Problems in diagrammatic reasoning

3.1.1 Impossible drawings

Several diagrammatic reasoning methods are based around the idea that direct diagrams

represent valid models (e.g. in Euclidean rule-and-compass reasoning, constructing a point

shows that it exists). Unfortunately for the diagrams-models link, it is possible to draw

impossible diagrams, that is, diagrams of non-existent objects (e.g. Figure 3.121 and Figure

3.222). This can happen if the 'true' geometry of the drawing plane (i.e. the physical nature of

the drawing plane) differs in some important way from the geometry we are reasoning

about. 

An example of this would be if we used Euclidean rule-and-compass reasoning, but

performed on the surface of a sphere instead of a flat plane. It would be possible to construct

cases that do not exist in Euclidean geometry, such as straight lines that meet at two separate

points. The examples shown in Figure 3.1 and Figure 3.2 involve using diagonal lines to

show depth as a way of representing 3D objects in 2D. The discrepancies between 3D space

and this representation allow us to draw impossible objects.

21 Oscar Reutersvärd, 1934. Independently invented and popularised by Roger Penrose, 1958 [40].
22 Source unknown; based on designs by Oscar Reutersvärd, 1950s.
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It is an assumption of this work that the drawing plane obeys Euclidean plane geometry

sufficiently closely to avoid the construction of impossible objects. It is entirely plausible

that the geometry of, say, a piece of paper or a computer screen is non-Euclidean at extreme

scales. However our inference scheme will take into account the limits of drawing and

measurement, so “sufficiently closely” will mean “up to detectable differences” . We

examine this in more depth in §5.1.1.

3.1.2 Optical illusions

Optical illusions play on idiosyncrasies of the mind's visual processing mechanisms to create

false impressions. Figure 3.3 gives an example where parallel lines are made to appear

slanted.23 Other effects that can be created include misjudgements of size and seeing

non-existent spots. The possibility of optical illusions calls into question the soundness of

diagrammatic reasoning. Potentially a reasoning rule might be falsely applied because of

such a misjudgement, or a false conclusion might be drawn from a diagrammatic proof.

23 Original source unknown.
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Figure 3.3. An optical illusion: the horizontal

lines are parallel.

Figure 3.2. None of these objects are

physically possible.



Without a mature theory of optical illusions, it is not clear how serious this issue is. It seems

reasonable to assume that optical illusions are unlikely to occur accidentally (and a

malicious reasoner could use almost any reasoning scheme to mislead people). This would

make them a theoretical concern rather than a practical worry. However we cannot

completely disregard the possibility that some types of diagrammatic reasoning might

naturally give rise to optical illusions. From the point of view of proving that our logic is

sound, we note that computer implementations do not suffer from optical illusions.24 So

whilst a user might conceivably be deceived as to what was being proved, they would be

unable to prove anything false. Eventually they would probably discover their mistake, and a

careful examination of the diagrams would always dispel the illusion.

3.1.3 Roughness of drawing

We can only draw to a certain level of accuracy. Also, we can only measure and test a

drawing to a certain level of accuracy. So all drawings have some 'roughness' to them. This

gives rise to several problems: a potential vagueness in the representation, restrictions on

what can be represented and the potential to hide inaccurate representations.

Vagueness of representation

The problem is this: we wish to reason about geometry, where lines have no width and

points have no size. However if we draw a line, it will have width, and a point will cover a

certain area. There is also a limit on how precisely we can position or measure objects

drawn in a diagram. These limitations mean that an object in a diagram might represent

many different objects in the domain. Moreover, these objects might be different in

important ways. For example, if we draw sets by shading points within the set, then the real

line � and the rationals � will appear identical (see Figure 3.4). It is therefore crucial that

our diagram logic must have a certain tolerance towards rough drawing. 

24 That is, a computer implementation with access to a symbolic description of the diagrams.
Computer vision systems that use heuristics to parse images can be fooled by optical illusions, but
that is not relevant here.
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Figure 3.4. An attempt to plot �  and �  with points plotted as dots of radius 1 printing pt.



Let us call the geometric objects we want to represent an idealised diagram, and our actual

physical representation a physical diagram. Once scaling, orientation and drawing tools have

been fixed, there is a simple mapping from idealised diagrams to physical diagrams.

However, roughness of drawing means that this mapping is many-to-one: each physical

diagram could have been created by many different idealised diagrams. Another reasoner

might think – quite validly – that it was one of these other idealised diagrams which was

intended.

Note that this problem does not occur in all domains. For example, Jamnik's DIAMOND system

works in the discrete domain of natural number theory. It uses what Jamnik calls a

'topological representation' where roughness of drawing is not a problem [24]. Figure 3.5

shows an example of this representation method. The implicit grid on which drawing is done

means that small errors in drawing will not affect the diagram's interpretation. However this

problem cannot be avoided in continuous domains25.

One solution is to discretise the domain, that is, to approximate it with a discrete grid. This

is not immediately suitable for analysis though, because infinitesimal differences are often

very important. For example, the difference between the open set (0,1) and the closed set

[0,1] is just two infinitesimally small points. Any discretisation would lose this crucial

difference.

25 It will also occur in dense domains, e.g. domains that quantify over the rationals.
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representation'.



However any physical drawing already has an implicit discretisation.26 To see this, consider

the related problem of representing sound (a continuous domain). The modern method used

is to digitise it, converting a continuous domain into a discrete one. If the sampling is fine

enough, people cannot tell the difference. Similarly, a flat picture can be captured as a

'bitmap image', and if the resolution is fine enough, we cannot tell the difference. The key

point is that human senses can only detect differences up to a certain level. And if two

representations are indistinguishable, they must be treated as identical by any logic that

handles them.

In principle, though it might sound contradictory, it is possible to avoid this implicit

discretisation by using computers instead of pen and paper. This is because a computer can

allow us to view a diagram at arbitrary resolutions. If the internal representation from which

each view is created does not perform any rounding, then we have not digitised. By zooming

in enough, it will be possible to tell the difference between even minutely different objects.

However the user cannot know how many times they must zoom in to check a given

property. For example, if two points in a plane are not equal, this can always be detected by

plotting them at a high enough resolution, but we cannot tell in advance what level of

resolution will be necessary, so plotting the points will never tell us that they are equal.

Moreover some objects – such as (0,1) and [0,1] – will be indistinguishable at any level of

magnification.

We conclude that vagueness of representation – that is, the many-to-one mapping between

idealised and physical diagrams – is an unavoidable problem when reasoning in a

continuous domain.

We will thus accept that our drawings (physical diagrams) will be rough approximations of

the objects we wish to represent (idealised diagrams). Each object in a physical diagram can

represent a class of domain objects. For example, if we have a point that appears to be at

(1,1), then this might actually represent any point within e of (1,1), where e depends on

drawing scale, drawing tools (i.e. dot size), and the limits of human vision. Thus there will

be a one-to-many mapping from physical diagrams to ideal diagrams.

26 We assume here, and throughout this thesis, that space is continuous, and a line drawing on a piece
of paper is a continuous representation. Quantum mechanics sheds some doubt on this assumption.
However since we move on to say that our representations will be discrete, this assumption is not
important.
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Limitations of what can be drawn

In the discussion above, we accepted that roughness of drawing prevents us from

representing any object precisely. It also bars us from directly drawing some objects at all

(e.g. � ) as their appearance would inevitably be misleading (c.f. Figure 3.4). This places

restrictions on what we can reason about without using indirect annotations. For example,

we cannot directly represent points that are too close to be distinguishable, curves which

look like straight lines, functions with small (i.e. undetectable when drawn) discontinuities,

etc. These are reasonably strong limitations for our domain.

Our solution to this is to use direct representations where possible, with indirect annotation

where necessary. By adding annotation, we can make vague aspects of a diagram more

precise. Thereby we can regain accuracy and extend what can be represented – although at

the cost of a more complex representation scheme. Our diagrams will mix object

representations and explicit statements of relations. Explicit statements will have 'priority'

over diagrammatic inferences: where an explicit statement contradicts the appearance of the

diagram objects, the explicit statement is taken to be true and the diagrammatic inference is

ignored. For example, suppose two points appear identical, but the diagram has annotation

stating that they are separate, then they are interpreted as being separate.

Lost details are 'important' if without them a desired relation cannot be legitimately inferred,

or an undesired relation can be legitimately inferred. In these cases, notation must be added

either to assert the desired relation or negate the undesired one. 

Most of the lost details, such as the precise position of a point, will not be important. If we

do want to precisely specify a point, we can do so by annotating it. For example, if we draw

a point that appears to be at (1,1) and we label the point “ (1,1)” , then it can only represent

the point (1,1); the vagueness introduced by roughness of drawing is removed by extra

notation. We anticipate that most such annotation will be reasonably simple statements.

However diagram annotations can contain algebraic statements and be as complex as

required. 
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Hidden inaccuracy

The problem: it is possible to draw diagrams which use roughness of drawing to create false

impressions. Figure 3.6 is a classic example27 of this. It shows 4 blocks being rearranged to

form the same triangle – but with one less square. The flaw is that the two small triangles

are not similar triangles, and therefore the large composite triangles are not really triangles

at all – because their hypotenuses are not straight lines – but two different quadrilaterals.

The illusion is quite persuasive, since it creates a big discrepancy by magnifying a small

inaccuracy. 

To solve this, we check when drawing objects that their appearance matches with what is

known about them. If there are any discrepancies, then the diagram is annotated to show

these. Hence Figure 3.6 would not be allowed unless the hypotenuse 'lines' were labelled to

indicate that they aren't really lines, which would ruin the illusion.

Clarity

Another issue related to roughness of drawing is the problem of unclear diagrams. It is

possible for diagrams to be too cluttered to be correctly read. This occurs when objects (or

27 Original source unknown.
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Figure 3.6. Rearranging the 4 shaded blocks seems to

change their total area.



relational statements) are drawn too small or too close together to be properly identified.

Potentially this issue could be dealt with by developing a theory of clear representations.

Unfortunately, that goes beyond the scope of this project. For our purposes, we must assume

that users will not create unclear diagrams.

3.1.4 Drawing mistakes

One advantage of using computers is that lines, angles, curves, etc. can all be plotted

accurately. This eliminates the possibility of accidentally constructing inaccurate diagrams.

However drawing mistakes could still arise in several ways:

1) Rounding errors can accumulate to produce a gross inaccuracy.

2) We may not know how to draw an object. That is, we cannot reliably calculate how it

should be drawn. For example, given a set X and a function f, reliably calculating how to

draw f(X) may be non-trivial.

3) We may not be able to evaluate a condition, and therefore will not know if our diagram is

or isn't accurate. Conditions such as “x<y” are easy to evaluate. However conditions such

as “X is an open set”  cannot, in general, be evaluated.

A sound logic must either prevent inaccuracy from occurring, or work regardless of it.

In most of the reasoning we will consider, inaccurate diagrams are not actually a problem.

This is because our logic prevents anything being inferred from the diagram that could not

be proved algebraically. Where inaccurate diagrams do become important in our work is in

counter-example reasoning (i.e. existence theorems), where we use the link between

diagrams and models to simplify the proof process (using the approach: “ if we can draw it, it

exists” ). For this to work, we require that our drawing methods are accurate, which places

limitations on where such reasoning can be used.

3.1.5 Ambiguity

By ambiguity we mean that one diagram may be interpreted in multiple ways. This can arise

from roughness of the representation, as discussed in §3.1.3. However ambiguity can also

arise even when all the parts of a diagram are drawn clearly. Figure 3.7 gives a picturesque

example of this;28 Figure 3.8 gives a more prosaic example of greater relevance to the

reasoning we consider. This is not a trivial issue, especially in more complex diagrams. For

a formal logic, it can be eliminated by placing restrictions on the drawing. If only a limited

28 Original source unknown.
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range of objects are possible, and both their individual and compositional interpretations are

fixed, then the diagrams will not be ambiguous within the context of the logic.

3.2 Algebraic pitfalls
The pitfalls of diagrammatic reasoning, such as those described above, can be presented as

an argument against the validity of diagrammatic reasoning. Critics of diagrammatic

reasoning tend to compare the naive informal use of diagrams with the formalised use of

algebra. It is therefore worth noting that informal algebraic reasoning (which – outside of

certain specialised communities – is more commonly used than formal logic) is also prone to

error.

Examples abound, even at the highest level (for example, the mistakes in Wiles' first proof

of Fermat's Last Theorem [47]. It is altogether possible that these would not have been

detected in a less high profile proof). The domain we consider is particularly prone to error,

and even the great Cauchy made mistakes [32][28]. Below we present a selection of errors

in sentential reasoning roughly analogous to those listed above for diagrammatic reasoning.

Of course none of these errors invalidates algebraic reasoning as a form of mathematical

proof. Formal algebraic logic is immune to all of them. The same can be true for

diagrammatic reasoning.
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Figure 3.7. Young or old? (hint: the

young woman's chin is the old

woman's nose).

Figure 3.8. Is the 'o' a label for the

square, a label for just one side, or is it a

separate circle?



3.2.1 Roughness of representation

Rounding errors are an algebraic equivalent to roughness of drawing in diagrammatic

representations. In Figure 3.6, we showed how magnifying a small drawing inaccuracy could

create a big error. A real-life sentential equivalent of this trick is 'salami attack' computer

fraud:

“ [There is] an automated form of computer abuse called the salami attack,

which works on financial data. This technique causes small amounts of assets

to be removed from a larger pool. The stolen assets are removed one slice at a

time (hence the name salami). Usually, the amount stolen each time is so small

that the victim of the salami fraud never even notices. 

One theoretical financial salami attack (it's assumed the status of an urban

accounting legend and has never actually been known to have been attempted)

involves rounding off balances, crediting the rounded off amount to a specific

account. Suppose that savings accounts in a bank earn 2.3%. Obviously, not all

of the computations result in two-place decimals. In most cases, the new

balance, after the interest is added, extends out to three, four, or five decimals.

What happens to the remainders? Consider a bank account containing $22,500

at the beginning of the year. A year's worth of interest at 2.3% is $517.50, but

after the first month the accumulated interest is $43.125. Is the customer

credited with $43.12 or $43.13? Would most customers notice the difference?

What if someone were funneling off this extra tenth of a penny from thousands

of accounts every month? Although this particular salami hasn't to our

knowledge been attempted, salamis that shave a quarter on up have been tried.

A clever thief can use [a salami program] that puts all of the rounded off values

into his account. A tiny percentage of pennies may not sound like much until

you add up thousands of accounts, month after month. Criminals using this

scheme have been able to steal many thousands of dollars. They are sometimes

discovered by a bank audit. More often, they are detected only when they use

their new-found gains to entertain a life style that is not supported by their

legitimate income.” [23]
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3.2.2 Limitations of what can be represented

As noted in §3.1.3, we cannot diagrammatically represent everything in a continuous

domain. It is worth noting that algebraic reasoning suffers from the same drawback: There

are objects in real analysis which simply cannot be represented. Indeed, technically almost

all objects cannot be accurately represented29. That said, the problem is worse for diagrams,

as there are interesting geometric objects, such as � � which can be represented algebraically,

but cannot be drawn without causing confusion.

3.2.3 Textual illusions

It might seem that the problem of optical illusions is unique to visual representations.

However sentential equivalents are possible, albeit much rarer. The puzzle in Figure 3.9

gives one example where two letters 'vanish' [56]. The illusion would not be serious, except

that formal logic relies on the precise manipulation of symbols in sentences.

3.2.4 Ambiguity

Statements with multiple interpretations are a familiar problem in linguistics. Lexical

ambiguity occurs when a simple expression, like 'bank', has more than one meaning.

Structural ambiguity occurs when a complex expression has more than one meaning, but not

because any of its parts are lexically ambiguous. For example: “ I once shot an elephant in

my pyjamas. What it was doing in my pyjamas, I'll never know.” - Groucho Marx30. Formal

mathematics simply outlaws lexical ambiguity and prevents structural ambiguity by fixing

operator precedence.

29 The proof of this is simple: the domain is uncountable, whilst algebraic representations can at best
distinguish between a countable number of objects. Therefore there exist an uncountable number of
objects without specific representations, greatly outnumbering those objects with representations.

30 “Animal Crackers”  Paramount Pictures, 1930.
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How many Fs ar e t her e i n t he f ol l owi ng sent ence?

" FI NI SHED FI LES ARE THE RESULT OF SCI ENTI FI C STUDY

COMBI NED WI TH THE EXPERI ENCE OF YEARS. "

( Most  peopl e f i nd 3,  but  i n f act  t her e ar e 5)

Figure 3.9. A textual illusion.



3.2.5 Hidden assumptions

Hidden assumptions crop up in lots of places when reasoning algebraically. The classic

example is dividing by zero. We present an example of this in Figure 3.10.31 However there

are many other pitfalls: taking the limit of a non-convergent sequence, re-arranging terms in

a sequence that is convergent but not uniformly convergent, differentiating a function that

has partial derivatives but is not actually differentiable, etc., etc.

3.3 Challenges in diagram logic
In this section we look at various desirable features of conventional logic, which are not so

easy to achieve in diagrammatic logic. Many of the problems in reproducing these features

in diagrammatic reasoning stem from the close link between diagrams and models. The

solutions we adopt to these problems are presented in chapter 4.

3.3.1 Disjunction

Pictures do not naturally represent disjunctions. Consider the statement “p or q” . In any

given model of “p or q” , either p is false, q is false or “p and q” is true. A logic that

includes disjunction must allow for all of these possibilities. Hence if we equate diagrams

with models, then a diagram cannot represent “p or q” , because it will represent only one of

the three possible cases.

31 Original source unknown.
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Let a=b

Then a2 = ab

a2 + a2 = a2 + ab

2a2 = a2 + ab 

2a2 - 2ab = a2 + ab - 2ab

and 2a2 - 2ab = a2 - ab 

This can be written as 2(a2 – ab) = 1(a2 - ab)

Cancelling the (a2 - ab) from both sides gives

1=2

Figure 3.10. A fallacious proof that 1=2.



There are at least two ways round this. Our solution will be to use multiple diagrams (c.f.

§4.2.6). The other alternative, as implemented in spider diagrams, is to introduce a special

notation for disjunction [11]. Spiders are good for the case x� A� B (since they avoid

splitting into multiple diagrams). However they only allow one type of relation –

membership – to be represented. Constraint diagrams generalise spider diagrams to

represent other relations, but the disjunction notation has not been generalised, and it is not

clear that it could be without producing unintuitive diagrams. HYPERPROOF also uses special

disjunction notation, with a shape that represents 'shape unknown', and a '?' sign for size

unknown. Again, this is not a general solution, since (a) it only handles two relations, and

(b) it cannot represent cases with partial knowledge, such as “X is a cube or a cyl i nder ” .

3.3.2 Negation

Often relation statements can be expressed by drawing a diagram that exhibits the desired

relation. Negative relation statements are more problematic. Arguably for some relations the

same approach – of drawing a suitable example – still works (e.g. not (x� X) has an intuitive

diagrammatic representation). In general though, we cannot represent negative statements by

drawing an example. For example, bl ack(raven) is easy to represent diagrammatically by

drawing a black raven, but the relation not (bl ack(apple)) is much harder (would one draw

an apple in every shade but black?). Representing relations by examples is only feasible

when there are a small number of cases. For negative relations, there can easily be a large if

not infinite number of cases (e.g. not (x=7) ).

3.3.3 Contradiction

If we equate diagrams with models, then diagrams are necessarily consistent. This would

take away the powerful tool of proof by contradiction, and limit diagrammatic reasoning to

constructive logics. 

3.3.4 Extending to new concepts and domains

Algebra is quite easily extended to new domains. When faced with new concepts, we can

simply define new symbols and terms to cover them.32 The same cannot be said for

diagrams. 

32 Russell does not consider this to be a simple process: “A good notation has a subtlety and
suggestiveness which at times make it almost seem like a live teacher.” [63] However he didn't
consider diagrammatic notation, and it is certainly true that extending algebraic notation is easy by
comparison.
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The strength of diagrammatic representations is that they are meaningful themselves (e.g.

using i nsi de for subset  implies that the relation is transitive, using dotted lines for an open

set suggests that the border isn't included, etc.). However this also makes them hard to

extend to new concepts. A new concept should have a representation that:

1) Conveys information about the concept.

2) Fits in with the existing representations (e.g. if you use colour to represent quantifier

type, you should not use colour to represent anything else).

3) Is not misleading.

This makes extending a diagrammatic language to handle new concepts potentially much

harder than for algebra. The converse of this is that successful diagrammatic representations

are powerful aids to reasoning. An important part of this project has been finding a suitable

representation scheme for the domain.

3.3.5 Quantifiers

The lack of an obvious representation for quantifiers has already been discussed in §2.2.3.

Here we note two more problems relating to their use.

Quantifier hierarchy

Our chosen domain contains concepts defined using alternating quantifiers. Quantifier

hierarchy – that is, the order in which the quantifiers appear – makes an important difference

here. Thus any representation we use for quantifiers must also capture their hierarchy. In

sentential reasoning, quantifier hierarchy is determined by reading from left-to-right.

However, the use of two dimensions with several spatial relations being significant removes

the neat left-to-right ordering on objects that we have in sentential reasoning. So

representing quantifier hierarchy in diagrams requires a new solution.

Existential import

It is natural when presented with a diagram that shows various objects to assume that at least

one example of the facts depicted does exist. Indeed, the link between diagrams and models

probably means that the diagram is an example of the facts it depicts. The natural way of

interpreting diagrams – that an example of the facts depicted does exist – means that the

universal quantifier has existential import. That is, the statement " x� X implies � x� X. This

is also true in aristotelian logic ([26]) and natural language, but of course false in predicate

calculus. It becomes problematic when we wish to make statements about universally

57



quantified objects, which might not exist. In such cases there is a potentially dangerous gap

between the natural reading of a diagram and conventional mathematics. We discuss this

further in §4.2.7.

3.4 Summary
In this chapter we have examined some of the ways in which diagrammatic reasoning could

lead to mistakes, and also the ways in which diagrammatic reasoning is harder than

algebraic reasoning. We conclude that there are serious challenges involved in developing a

formal diagram logic. These include:

	 Working with roughly drawn imprecise diagrams.

	 The possibility of drawing mistakes.

	 Ambiguous drawing.

	 Representing disjunctions, contradictions and negation.

	 Reasoning with quantifiers.

	 Generalising a proof correctly.

This list might suggest that diagrammatic theorem proving is not worth pursuing. However

we have outlined solutions to some of these problems (typically based on accepting the

limitations of diagrams, and working either with or around them), and also shown that

analogous problems occur in sentential reasoning. As we shall demonstrate in chapters 4 and

5, these problems do not prevent sound diagram logics from being possible, even for

difficult domains.
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4 A Diagram Logic for Analysis

Proofs

This chapter sets out the methods used for representation and reasoning, and explains how

they work. We start by presenting an example demonstrating the kind of reasoning we wish

to formalise. This will be quite informal, as its purpose is to illustrate the differences from

standard reasoning in the domain, and to show some of the challenges involved. §4.2

discusses how our logic – which we call dynamic diagram logic (or DDL) – works. We

summarise its conclusions here:

1) The diagrams mix graphical and sentential elements, but with a preference for graphical

representations when feasible. The representations used are designed to give clear

diagrams and make the reasoning as natural as possible.

2) Both the inference rules and the proofs are made from these diagrams, rather than using

diagrams to guide an algebraic proof.

3) The reasoning is 'dynamic' reasoning, where the process of drawing diagrams is

important (as opposed to 'static' reasoning, which interprets a finished input diagram).

4) The reasoning involves a mix of diagrammatic reasoning rules, plus implicit inferences

based on the diagrammatic representations.

5) The reasoning uses specific examples from the domain rather than universally quantified

objects. Where possible, it uses examples that can actually be drawn in two dimensions.

This way the example object can represent itself, rather than being represented as an

abstract label. Theorems with a continuum of cases are proved by considering one

specific (but generic) case.

6) The correct generalisation is extracted from the structure of the proof, rather than being

part of the statement of the theorem.

§4.3 then defines the formal framework for DDL. This section is crucial to showing the

soundness of the logic, but not necessary for using the logic. In a sense, the first three
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sections cover the same ground, first illustrating (informally), then discussing issues

involved in formalising, then formalising.

The fourth section then examines how DDL can be used to reason about analysis – giving a

system we call DDLA. It covers the representation schemes we use, the 'built-in' inference

rules, and some example axioms. DDLA follows e- d analysis as closely as possible. This

should help in developing proofs, and also ensure that the logic developed will be useful for

teaching the subject. The logic set out in this chapter will then be analysed for soundness in

chapter 5.

4.1 An example proof: f(x) = 1/x is continuous

on (0,���� )
The proof of this statement is reasonably complex, illustrating most aspects of our logic.

The proof will invent representation schemes as it goes, which are discussed later in §4.4.

We prove f is continuous by showing that f is surjective (Figure 4.1), f is decreasing (Figure

4.3) and that surjective and decreasing implies continuous (Figure 4.5). The algebraic proof

follows the same plan. We assume for now that f is well defined; this will be proved later,

both algebraically and diagrammatically.

4.1.1 Diagrammatic proof of the theorem

f is surjective
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Figure 4.1. Diagrammatic proof that f(x) is a surjective function (i.e. " y� x.f(x)=y )



Figure 4.1 shows a diagrammatic proof, which should be read from left to right as a

sequence of reasoning steps. We first consider an arbitrary point y� Y (diagram 1), then get

y� X, since Y=X=(0,� ) (diagram 2). We then generate a point f(y)� Y and use the fact that

" x, x.f(x)=1 (from the definition of f) to create a rectangle of area 1 (diagram 3). We can

now rotate this rectangle (preserving its area) to get a rectangle of area 1 with sides y� Y, f(y)

� X (diagram 4). This implies that f(f(y))=y so we have found a pre-image for y as required

(diagram 5).

This property – x.f(x)=1 – will be our diagrammatic definition for f, which we codify using

two rules. These are shown in Figure 4.2. Rules are defined by antecedent and consequent

diagrams, with the antecedent drawn above the consequent. The left-hand rule states that

given points x, f(x), the area of the rectangle they generate will be 1. The right-hand rule is

the converse; if two points x, y generate a rectangle of area 1, then y=f(x). The change here is

much more subtle: only a label – f(x) – is added.33

Note that when defining a function we cannot simply use the graph of that function, as this

would not be rigorous without tackling questions of what resolution it was drawn at.

Depending on the resolution of the graph, there may be hidden features such as spikes and

33 Because changes can be subtle, we sometimes use a highlighting technique to emphasise them.
This is implemented in our � � �� � � � �� system (c.f. §6.3), although not required by the
specification.
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Figure 4.2. Diagrammatic definition for f(x) = 1/x.



jumps.34 Sketching the graph in might serve as a useful prompt to reasoning, but to give

rigorous proofs we need a more concrete property, such as x.1/x = 1. Such properties should

also have a strong visual aspect if they are to produce good diagrammatic proofs.

f is decreasing

The next stage of the proof (Figure 4.12) involves performing a case split, and showing that

only one of the cases is valid. The other cases are eliminated by deriving a contradiction –

this is done by creating two rectangles that should have the same area, but clearly do not.

We start by drawing two points x1, x2 such that x1<x2. We then plot f(x1), f(x2) and consider

the three possible orderings of these points. By using the fact that f(x).x=1 (the left-hand rule

from Figure 4.2), we show that two of these orderings are impossible. This leaves the third

option – that x1<x2 �  f(x1)>f(x2), i.e. the function is decreasing.

Surjective and decreasing  ����   continuous

The last stage of the proof is the most complicated. Let us first consider what it means to be

continuous. Continuous functions map nearby points to nearby points. In e-d analysis, the

concept of 'nearby' is formalised as 'within a ball of arbitrarily small radius' (traditionally

34 We could construct a logic where reasoning directly from the graph is rigorous (e.g. by restricting
to uniformly continuous functions, which we can plot with guaranteed error bounds.). However we
will not explore that option here, as we want to consider all functions – even the pathological ones.
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Figure 4.3. Diagrammatic proof that f(x)=1/x is a decreasing function.



this radius is denoted by e). It gives rise to the following definition for continuity: “ If a

function is continuous, then given any point x and any e>0, there exists a d>0 such that

f(Bd(x))� Be(f(x))” (where Br(x) = the open ball of radius r about point x, and we define

f:sets® sets from f:� ® � in the normal manner). We represent this diagrammatically as

shown in Figure 4.4.

However for this proof, we wish to show that f is continuous, which means using the

converse rule:

Given f:X® Y, if " x� X, " e>0, � d>0 such that f(Bd(x)� Be(f(x)) then f is

continuous

Representing this diagrammatically poses certain problems, which we discuss in §4.2.7. Our

solution will be to use an animated antecedent, which allows us to handle the alternating

quantifiers in the definition above. For now, we observe that to prove f is continuous, we

must demonstrate that the rule shown in Figure 4.4 holds (i.e. given an arbitrary x and e, we

must find a suitable d).

Figure 4.5 now presents our proof of the final lemma. Diagrams 2 and 3 create an arbitrary x

and e. Because nothing is known about x and e, they behave like universally quantified
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Figure 4.4. Redraw rule defining continuity.
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Figure 4.5. Diagrammatic proof that f surjective and decreasing �  f continuous.



f(Bd(x))� Be(f(x)). This is done by showing that for any point x' in Bd(x) (diagram 6), we have

f(x') in Be(f(x)) (diagram 9), hence f(Bd(x))� Be(f(x)) (diagram 10). We have now shown that

for any x, e, � d such that f(Bd(x))� Be(f(x)), which is the behaviour of a continuous function,

hence we are finished (diagram 11).

Presentational issues

The comic-book style chains of diagrams used above are a cumbersome way of presenting a

proof. This is because DDL is designed to be presented on a computer. On a computer (or a

blackboard) the diagrams can be modified in situ, which avoids large chains and makes the

steps much clearer. Another presentational problem is that the diagrams in Figure 4.5

become quite cluttered, which can hinder understanding. There are several things that can be

done to improve this, all suited to a computer implementation. Object labels could switch

from being drawn as normal when there is sufficient space, to popping-up only when

pointed to (e.g. with the mouse) in crowded sections. This would allow all objects to be

labelled. Observations such as cont i nuous(f) can then be separated from the graphical

objects and expressed algebraically (e.g. in a space at the bottom of the diagram) using the

labels. Also some objects are not needed all the way through the proof (e.g. the points x' and

f(x') in diagram 10 of Figure 4.5), and can be made to disappear once they have been used. have any of

these been done?

4.1.2 Algebraic proof of the theorem

We now give an algebraic proof of this theorem for comparison. This proof has the same

structure, but a very different feel.

Continuity Definition: Given f:X® Y, " x� X, " e>0, � d>0 such that f(Bd(x)� Be(f(x)) � f

continuous

Lemma: Let X = (0,���� ), f(x) = 1/x, then f:X ®®®®  X is decreasing and

surjective

Proof:

1) f is surjective

" a� X, �  b = f(a)

a.b = 1  �  b.a = 1

therefore f(b) = a

2) f is decreasing
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"  x1, x2 �  X such that x1 < x2, let y1 = f(x1), y2 = f(x2).

Suppose y1 < y2

Let d = x2 - x1 then y2.(x1 + d) = y2.x2 = 1

y1(x1 + d) < 1

y1.x1 = 1 therefore y1.d < 0

But y1 > 0, d > 0  �  contradiction, so y1 �  y2 as required.

Lemma: f:X ®®®®  Y monotonic, surjective  ����  f continuous

Proof:

Without loss of generality, say f is an increasing function.

" x� X, " e > 0, let a = f(x) – e, b = f(x) + e

f surjective �  �  a',b' such that f(a') = a, f(b') = b 

let d = mi n(|a' - x|,|b' - x|)

f increasing, a < y < b  �  a' < x < b'

" x' � X, |x - x'| < d  �  a' < x' < b'

f increasing �  f(a') < f(x') < f(b')

 �  |f(x') - f(x)| < e

So " x� X, " e>0, � d(x,e) such that |x - x'| < d � |f(x) - f(x')| < e, therefore f is

continuous on X as required.

4.1.3 Summary of example proof

This example shows how diagrams can be used to give a rigorous non-trivial proof (although

we have not yet explained the representations used or the mechanics of the reasoning).

Comparing this proof with the corresponding algebraic proof shows both advantages and

disadvantages for each method (bearing in mind that the theorem was chosen to suit

diagrammatic reasoning, and so this is a biased comparison). The algebraic proof is more

compact, but considerably drier. Both involve complex and technical ideas, and require

some training to be understood.

4.2 Dynamic diagram logic
Here we discuss issues raised by the example proof in §4.1, and this leads to an explanation

of how DDL works.
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4.2.1 Representation of relations

Facts or relations in our diagrams are represented in several ways. Some, such as x� X are

implicit in the way the objects have been drawn. These we call implicit relations. To capture

this, our logic gives rules for spotting these relations, such as “ If a point x is drawn inside a

set X, then the diagram represents the relation x� X” . Other facts are represented by a

graphical annotation (e.g. x=f(x) is represented by an arrow) and some are stated

algebraically (e.g. cont i nuous(f) in Figure 4.4). We call these last two categories explicit

relations – they must be explicitly stated since drawing the objects alone would not

represent them. These concepts are formally defined in §4.3.2.1.

4.2.2 The structure of the proof

Note that the diagrammatic and algebraic proofs have very similar structures. This is not

always the case though. For example, we assumed here that f is a well defined function; the

diagrammatic and algebraic proofs of this are quite different – as shown in Figure 4.6.

4.2.3 Generalisation in diagrammatic proof

The example proof gives several examples of the generalisation process. Consider the

lemma that f(x)=1/x is a decreasing function (Figure 4.3). The diagrammatic proof used two

specific points - say, x1 = 1.2, x2 = 1.8 - and showed f was decreasing in their case. However

it did not depend on the specific values of the points drawn – indeed, their precise values
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Figure 4.6. Differing approaches to proving that f(x)=1/x is well defined.

Algebraic Proof

Depends on the approach taken to defining

� :

Axiomatic: True by definition, since � is a

field.

Constructive: Depends on how � is

constructed.

Diagrammatic Proof

Below is a ruler & compass construction of

1/x from x given a unit length:

1:y = x:1

Therefore y = 1/x



were not known. Instead the reasoning drew on the ('general') facts that x1, x2 � (0,� ), x1 <

x2 and that " x, x.f(x)=1. Thus the same reasoning could be applied to any two points in

(0,� ), so we can conclude that the function f(x) = 1/x is decreasing. However the reasoning

could not be applied to any other function – because the reasoning requires " x, x.f(x)=1 – so

we cannot generalise to other functions.

In order to avoid a dependence on the specific values of x1 and x2, we cannot simply observe

that f(x1)>f(x2), but have to consider a case split. Diagrammatic case splits are slightly

unusual: in the algebraic version, f(x1), f(x2) are abstract points and their relative sizes are

unspecified, whereas in the diagrams f(x1), f(x2) have values (from where they're drawn)

which are already fixed by this stage in the proof. So the diagram is already in one of the

cases - f(x1)>f(x2) - and the others are false for the diagram drawn. Hence performing a case

split requires generating new models (for this case, we used new values for f(x2)). We could

create a model for each possible case (with respect to the relationships we consider, such as

x>y or a� b) when drawing each object. However this would quickly produce an

unmanageable number of cases. Instead, we introduce the case split at the same point as in

algebraic reasoning - that is, when a relationship is considered. This produces far fewer case

splits. The '<' symbol is used as a label to mark relationships that have been 'observed', are

known to be true for all cases in that branch of the proof program, and thus may be used in

the reasoning.

The final section of the proof - that decreasing and surjective imply continuous - involves

several generalisations:

1) generalisation from x' �  Bd(x) �  f(x') �  Be(f(x)) to f(Bd(x)) �  Be(f(x))

2) generalisation from f(Bd(x)) � Be(f(x)) to the observation that this is true for all (positive)

values of e  (and therefore f is continuous at x)

3) generalisation from f continuous at x �  X to f continuous on X

Here generalisation must be carried out at steps during the proof as well as at the end of the

proof. This is always the case for rules that recognise properties. Our approach to

formalising such rules is to use 'animated' antecedents. These have a chain of diagrams as

their pre-condition to capture the fact that the pre-condition is a type of behaviour.
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Summary of generalisation method

1) Reason with specific instances.

2) Analyse the reasoning to check what cases it can be applied to.

3) Generalise to all cases where the chain of reasoning is guaranteed to be valid.

Such proofs, where the proof is a method that can be applied to all cases, are called

schematic proofs [24]. An advantage of this approach is that it is not necessary to specify the

correct generalisation in advance. Instead we can extract it from analysing the proof. This

allows us to explore a theorem, discovering its limitations through our proof of it. This can

be seen as a simple form of Lakatos's method of 'strategic withdrawal' [28]. It is possible

because of the link between diagrams and models. It may be that a conjecture is false

generally, but true for the case being considered. In this situation, we can apply the method

of strategic withdrawal, and 'fall back' to a more restricted statement of the conjecture which

we can prove.

4.2.4 Introducing redraw rules

Our examples in this section will be based on the property of being an open set. This is

defined as follows:

Definition 4.2.4.1: If X is open...

open(X), x� X  �   �  e>0 such that Be(x)� X

Definition 4.2.4.2: X is open if... 

"  x� X, �  e>0 such that Be(x)� X  �   open(X)

DDL is defined using redraw rules, which are similar to rewrite rules but transform

diagrams rather than formulae. This reflects our belief that diagrammatic reasoning is often

linked to the drawing process, rather than just the finished diagram. These rules are

expressed diagrammatically by an example transformation. A simple redraw rule, D0 � D1,

consists of an initial diagram (D0, the antecedent or pre-condition) and a modified diagram

(D1, the consequent, or post-condition). Figure 4.7 gives an example redraw rule. The

antecedent is the top diagram, the consequent the bottom, and we use the convention that a

shape drawn with a dotted line is interpreted as an open set. The antecedent diagram will

match any point y in any open set Y; the consequent guarantees the existence of a ball

Be(y)� Y.
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Theorems are stated as rules and are expressed using the same diagrammatic representation.

A proof consists of a demonstration that the theorem antecedent can always be redrawn to

give the consequent diagram using an accepted set of rules (i.e. the axioms). Hence a proof

is a chain of diagrams, starting with the theorem antecedent and ending with the theorem

consequent. We refer to an incomplete or complete proof as a proof program.

Informally, the procedure for applying a simple rule is:

1) The antecedent diagram is matched with some part of the current diagram.

2) The current diagram is modified in an equivalent way to the modification between the

antecedent and consequent diagrams. This modified diagram is added to the end of the

reasoning chain, and becomes the new current diagram.

The principal differences from natural-deduction rewrite rules are:

	 There can be an infinite number of valid (but equivalent) redrawings for a given diagram,

a given rule and a given matching (e.g. a rule may specify that a point should be drawn,

but leave open the choice of which point to draw).

	 Due to the problem of multiple possible generalisations, there is no clear choice for how

the matching algorithm should work.
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4.2.5 Sometimes a diagram says too much

Our diagrams are drawings of specific cases, annotated with relational information.

However some relations are represented 'implicitly', simply by being true in the model (e.g.

x� X in Figure 4.7). Let us call this a 'model-based' approach to diagrammatic

representations.

Consider trying to represent x� X� Y within this framework. Whatever model we choose to

represent x� X� Y will also represent either x� X or x� Y. To get round this, we introduce

algebraic statements that cancel such unwanted relations. This is done by stating that the

unwanted relation r(x,y) – although true in the drawing – isn't known to be true, i.e.

unknown(r(x,y)). This will be illustrated in §4.2.6.

Note that some unknown statements will be generally true (i.e. true for all cases) as a result

of drawing constraints imposed by the other objects used in their construction.

As a result unknown statements (which should be automatically generated by any

implementation) can sometimes be useful as a heuristic. Properties that need to be proved as

sub-goals in a proof will sometimes appear early on in the proof as unknown implicit

relations. Targeting these advances the proof. Hence the unknown statements can be used as

a heuristic, focusing the user's attention on potentially key parts of the diagram.

4.2.6 Using branching for disjunction

DDL uses branching to create multiple diagrams for representing and reasoning with

disjunction, as discussed in §4.2.3. Case splits are handled by splitting the proof program,

with one branch for each case. Note that the decision on which case to draw is made when

an object is created – that is, before the case split, and this drawing does not cover all the

cases that might later arise. Hence when performing a case split, we must either generate

modified diagrams covering the other cases, or work with inaccurate diagrams. 

Figure 4.8 shows these two options for the case split x� X� Y � x� X or x� Y. In the left

hand rule, we start with a model for the case x� Y (note the use of the unknown statement

described in §4.2.5 to cancel this observation). After the case split, we keep this model for

the x� Y case (whilst dropping the unknown statement), and we generate a modified model to
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fit the case x� X. In the right hand rule, we keep the same model for both cases. This means

using algebraic annotations to (a) recognise the x� X case, and (b) cancel out the unwanted

and x� Y relation which is still present.

Clearly, generating a modified model (the left hand rule in Figure 4.8) is preferable in terms

of producing understandable diagrams, since inaccurate diagrams are likely to be

misleading. However there are inconsistent cases where an accurate diagram is impossible –

the case split in Figure 4.3 is an example of this. In such cases we are forced to choose

which relations will be inaccurate. We could automate this choice by ordering the different

types of relation, with a preference to making the more visually striking relations accurate

(e.g. in Figure 4.3, we chose a diagram that shows f(x1)<f(x2) accurately at the cost of

making f(x2)=“ f applied to x2”  inaccurate).

4.2.7 Quantifiers

Using animation for quantification

Figure 4.7 shows a diagram for “ If X is open...” . Consider implementing the converse rule

(definition 4.2.4.2). This definition can be read as “ If, given any point x in X, we can find an

e>0 such that Be(x)� X, then X is open” . Note the verb phrase 'we can find...' – this condition

72

Figure 4.8. The x� X� Y � x� X or x� Y branch rule with (left) and without (right) modifying

the underlying model. Note that the intersection is not present as an object.



can be thought of as dynamic: it gives a type of behaviour which we must demonstrate to

show that X is open (by contrast, the condition “X is open” in definition 4.2.4.1 can be

thought of as adjectival). Static diagrams are not well suited to representing behaviour. They

are better suited to adjectives than verbs. Instead, we introduce animated redraw rules. An

animation here is a chain of diagrams. Animated redraw rules have an animation as their

pre-condition. Where as simple redraw rules need only match the last diagram in the

reasoning chain, animated rules must match a section of the reasoning chain. Figure 4.9

shows how we represent definition 4.2.4.2 as an animated redraw rule. The terms strict and

flexible have not yet been defined. They describe the transitions in the animation, and will

be used to distinguish between universal quantification (the point in Figure 4.9) and

existential quantification (the ball in Figure 4.9). How this works is explained later in this

section.

Quantifier hierarchy

As with sentential reasoning, quantifier order can be important. Animation gives a reliable

and intuitive ordering without introducing extra notation. This is because of causality: it is

obvious that object A cannot depend on object B if B was drawn after A.

Generalisation

In DDL, a matching algorithm allows redraw rules specified in terms of specific examples to

be applied to a wide range of diagrams. Thus the matching algorithm determines the

generalisation of the rule (and vice-versa: specifying generalisations would establish a

matching criterion). As discussed in §2.1.3, there are often several possible generalisations,
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Figure 4.9. Definition 4.2.4.2 as an animated redraw rule.



hence several matching algorithms are possible. These matching algorithms differ over

which aspects of a diagram are important (and should form part of the matching conditions),

and which should be ignored (i.e. generalised over). It seems unlikely that there will be a

canonical answer to the question of what aspects of a diagram should be considered

important. The difference is that conditions in algebra are explicitly stated, whilst diagrams

often contain a lot of information that may or may not have been intentional.

We could simply make all the relevant information explicit in the diagram, and assume

everything else is unimportant. However this would make for cluttered, less legible,

diagrams. A more sensible approach is to have a default interpretation that certain aspects of

a diagram are assumed to be important. Ideally, this should be the same as the intuitive

reading of the diagram. The conditions specified by this default interpretation can be

changed, but only through explicit conditions in the diagram. Spider diagrams show how

this can be used for representing set membership, where spiders are used to override the

default reading. The idea of default interpretations with explicit corrections can be extended

to cover other relations. Some of the default readings we use are:

1) Lengths are considered unimportant (to be generalised), unless a statement of the form

l engt h(a) < l engt h(b) or l engt h(a) = n is present.35

2) Set membership is considered salient, unless a statement of the form unknown(a� A) is

present.

Default interpretations/explicit corrections are implemented in DDL using implicit and

explicit relations, which are defined in §4.3.2.1. The full list of default interpretations for

DDLA is given in §4.4.5.

Quantifier behaviour

We will now look at how quantifiers should behave in a redraw rule logic. Statements in

DDL are expressed as rules, hence the question of “how do quantifiers in a rule antecedent

behave?” becomes “when should a rule antecedent match a reasoning chain?” That is, at the

syntactic level, the question of “what does a diagram/animation mean?” is recast as “what

diagrams/reasoning chains does it match?” .

35 This particular design decision (to represent a>b algebraically rather than implicitly) was probably
a mistake. See §4.4.5 for a discussion of this.
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We have to be careful working in direct diagrams, as a quantified object is also a specific

example (because the diagram requires an example object to be drawn).36
37 For example,

when reasoning about an abstract universally quantified point, we must nevertheless draw a

particular point, and this point will have properties that do not hold universally. However, as

long as such properties are not used in the reasoning that follows, they will not affect the

generality of the proof. The reasoning that follows would work for any point, so it does not

matter which point was actually drawn. The specific case that is drawn comes to represent a

class of equivalent cases. What matters is that the reasoning is generic. With indirect

representations, this is automatically enforced by using generic objects; with direct

representations the generality of the reasoning must be checked.

Consider again Figure 4.9, where there is a universally quantified point x in the middle of

the rule antecedent. Suppose we wish to apply this rule to show that the unit ball Y=B0(1) is

open. First we introduce an arbitrary point y� Y to match the point x in the rule antecedent.

We still have further reasoning to do before the rule will match: we have to find an e-ball

about y that lies within the set Y. The reasoning that follows must be universally applicable,

which means that it must not use the specific nature of the point y, only the fact y� Y. For

example, suppose we concluded B0.1(y)� Y with y=(0.7,0.8) by examination of B0.1(y). The

reasoning would be sound for this case (since B0.1((0.7,0.8)) � B0(1) is true), but it would

not apply to other values of y. Hence the rule – which requires that such an e exists for any

point – would not be applicable.

This leads us to the following method for reliably enforcing generic reasoning: suppose an

animated redraw rule has the antecedent D0 - D1 - ... - Dn, where the Di are diagrams. When a

universally quantified object is introduced into the proof, it must be done exactly as shown

in the rule. The interpretation of the object introduced into the reasoning chain must be

equivalent to the interpretation of the object introduced in the rule antecedent. If diagram Di

introduces a universally quantified object, we call the transition Di-1 - Di a strict transition,

since it will only match a transition Pj - Pj+1 if Pj - Pj+1 shows equivalent modifications to Di-1

- Di and no other modifications (i.e. no extra constructions or conditions). 

36 To be precise, because of blurring effects, each object is interpreted as a small37 class of specific
examples.

37 Uncountable, but small.
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When the rule antecedent contains an existentially quantified object, all that must be shown

is that some matching object can be constructed in the reasoning chain. How this is done

does not matter.38 Hence an existentially quantified object can be drawn in any manner using

several redraw operations, since all we require for the rule antecedent to match is that some

such object exists. If diagram Dj introduces a universally quantified object we call the

transition Dj-1 - Dj a flexible transition. A flexible transition allows arbitrary other

constructions to be drawn in the reasoning chain when moving from one diagram in the rule

to the next.

For example, consider the theorem “Br(x) is open” . Proving this takes 11 steps in DDLA,

with the final step being to apply the rule from Figure 4.9. A sketch of this proof is given in

Figure 4.10 (using the symbol � for “ redraws to” ); the full proof and rules used can be

viewed on the CD-ROM. We start with the set Br(x) (diagram P0 in Figure 4.10), which

matches the set X in diagram D0, Figure 4.9. The first step is to introduce an arbitrary point

in Br(x) to match the universally quantified point in diagram D1, Figure 4.9. It then takes

three steps to construct a suitable e-ball (P5 in Figure 4.10) and five more steps to show that

it lies inside Br(x) (diagram P10). All these steps are performed using simple redraw rules.

Finally we can apply the animated rule shown in Figure 4.9 and conclude that Br(x) is indeed

open. Let P0 - ... - P11 be the proof. Then D0 matches P0, D1 matches P1 and D2 matches P10,

as shown in Figure 4.11.

38 Provided new objects are created using existentially quantified rules that guarantee the existence of
the objects they draw.keep this?  ??  
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Figure 4.10. Sketch proof for “Br(x) is open”.



Existential import

As discussed in §3.3.5, the natural way of reading a diagram such as D1 in Figure 4.9 would

probably be to assume that at least one point existed in the set. However definition 4.2.4.2

also applies to the empty set. There is thus a discrepancy between the natural reading of

Figure 4.9 and the standard definition of an open set. The easiest way around this would be

to keep the natural reading and treat objects such as the empty set as special cases, dealt

with by their own rules. There are several drawbacks to such an approach though:

1) Our proofs would not carry over to cases where some of the sets involved are empty.

2) We would require more rules. Each concept defined would probably need an extra rule.

3) Our definitions would differ slightly from the standard ones.

It is mainly this last consideration that leads us to reject existential import. Using a logic

with existential import would probably be wrong in a mathematics teaching tool, since it

goes against convention and could cause confusion to students. Keeping existential import

may be suitable to other domains though, especially those closer to real world problems.

Instead, we adjust the matching algorithm to allow vacuous quantification. We add a redraw

rule for 

X  �   � X or not (� X)

We can then allow rules with " X to match not (� X). This restores the standard mathematical

meaning of universal quantification, although it is both less intuitive and complicates the

mechanism of DDL.

Quantification in the rule consequent

In the rule consequent, all new objects are by default assumed to be existentially quantified.

Universally quantified objects are explicitly identified, either by labelling or colour-coding.

More complex consequents (i.e. those with mixed quantifiers) can be dealt with by breaking

the statement into several rules. We could also use animated consequents for such

statements. Such rules have not occurred yet in our work – although we do examine one in

§8.2.1.
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Quantifier scope

We limit DDL to representing a single nesting of quantifiers. That is, quantifier hierarchy in

a diagram is a total order, and we cannot represent statements of the form “(" x.p)� (� y.q)”

where neither quantifier has scope over the other. This restriction (which has not caused any

problems) could be removed by using the idea of dependent objects (c.f. definition 4.3.2) to

define quantifier scope. 

4.2.8 Aspects of DDL not illustrated in ���� 4.1

Free rides and implicit inferences

'Free rides' are an important phenomenon in diagrammatic reasoning. A 'free ride' is when

the representation for certain relations automatically implies some inferences without the

need for explicit reasoning [45]. For example, if we represent A� B, B� C in a diagram, we

will automatically represent A� C. Free rides almost certainly add to the power of

diagrammatic reasoning, and it would seem sensible for a diagram logic to take advantage of

this. DDL does so, formalising these within the system via implicit inference rules (c.f.

§4.4.6). 

Emergent objects

Closely related to free rides is the phenomenon of emergent objects. These are diagram

objects formed as a side-effect of drawing other objects. Examples would be the creation of

set regions such as A� B, or recognising that the triangles in Figure 4.12 form two squares. If

we are to reason about emergent objects, we need rules for recognising them. These rules

need to both recognise emergent objects, and check that they always exist (i.e. that the

emergent object is a necessary consequence of the properties of other objects in the diagram,

and not merely an accident of drawing choices). This is not always simple. For example, the

triangles in Figure 4.12 clearly form a square – c2 – within a square – (a+b)2 – but that the

interior shape must be a square is less obvious (it draws on the fact that they are right angled

triangles, and that their interior angles add up to 180o). Automatically verifying such facts

could hide important aspects of the proof from the reasoner – which we would not want in

an educational tool. So, whilst emergent objects undoubtedly add to the power of

diagrammatic reasoning, it is not clear that we want to build them into our logic. A sensible

compromise might be to automatically detect simple emergent objects, such as the formation
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of sets like A� B or that the outer square in Figure 4.12 is a square, but not emergent objects

that require non-trivial reasoning to demonstrate their existence, such as the inner square in

Figure 4.12.

Reasoning with counterexamples

So far we have looked at proving general conjectures (i.e. theorems of the form " x... ), and

thus focused on the problems involved in correct generalisation. We also want to be able to

disprove such conjectures when false by producing counterexamples. The strong link

between models and diagrams suggests that diagrammatic reasoning could be well-suited to

reasoning about counterexamples. We give one example below:

Suppose we wish to disprove the statement: A� X� Y � A� X or A� Y (which we represent

in DDL as a redraw rule that can be added as an assumption to the axioms). Figure 4.13

provides a counterexample (since B� X� Y but B� X and B� Y).
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Figure 4.13. A counterexample to A� X� Y �  A� X or A� Y.



We would like to incorporate counterexample reasoning into DDL. It is helpful to think of

such reasoning as taking place in two stages:

1) Finding/presenting the counter-example (& showing it exists).

2) Demonstrating that it is indeed a counter-example.

1) Presenting an example

Unlike the reasoning we have considered so far, this first stage doesn't involve using

diagrams that generalise. Instead it requires the opposite approach – interpreting the diagram

as referring to one specific example. That is, instead of reading graphic objects as “Given

any line...” , we read them as “Consider this line here...” . Syntactically, this can be achieved

by using an existential quantifier and fixing (making into observed relations) the graphic

object's parameters. In doing so, we need to know that the diagram does indeed correspond

to a model.

Moreover, the diagram will often contain several implicit relations that we would normally

cancel using unknown statements because they are not generally true. In counter-example

reasoning however, we want to assert these relations as being true for this case. For example

in Figure 4.13, we draw x� B, but also want x� X and x� Y, which is true for this case but not

for all X, Y, x and B. In algebraic reasoning this would be equivalent to deducing

“ � x.x� X,x� Y” from “ � sets X, Y, B and point x such that x� B” – which is not valid without

first specifying values for x,X,Y,B and demonstrating the required relations. The ability to

perform such steps is one advantage of diagrammatic reasoning. For it to work, we need to

be able to reliably link graphic objects with domain objects that share the same relations.

This will work – thanks to the close link between diagrams and models – as long as the

diagram is accurate (which we will define in §5.1.2) and our algorithms for evaluating

implicit relations are reliable. Unfortunately, we cannot generally evaluate whether or not a

diagram is accurate. As discussed in §3.1.3, a diagram can contain inaccuracies too small to

spot. This will limit our use of such shortcuts to � and � relations, where we can reliably

evaluate the accuracy of the diagram.

2) Demonstrating that an example is indeed a counterexample

Having found a suitable example, we may still need to do considerable work to show that it

is indeed a counterexample. This second stage consists in adding the conjecture as an

assumption, and showing that this leads to a contradiction when applied to the
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counterexample. Note that this work may involve using arbitrary (universally quantified)

graphic objects again. For example, to show a set X is not open, we must show � x� X such

that " e >0. Be(x)� X �  f al se.

Our Method

We accomplish the first stage by having two sets of basic object-creation redraw rules: one

that draws universally quantified objects (to be used for proofs such as in §4.1), and one that

draws specific objects (existentially quantified and with their parameters as observed

relations) to be used in creating counterexamples. ??actually i make objects specifc after the fact

This gives the following method for disproving a conjecture (provided it can be expressed as

a redraw rule) by counter-example:

1) Add the conjecture as a redraw rule R to the usual axioms.

2) Draw a diagram using specific-object redraw rules

3) Use R and other rules to derive a contradiction.

(where steps (2) and (3) can be intermingled)

Such a proof is finished when all the branches of the reasoning program have been shown to

contain a contradiction.

Cleaning up the diagram

As observed in §4.1.1, diagrams can become too crowded, hindering understanding. Some

objects are needed during the reasoning, but do not form part of the theorem. Once such an

object has served its purpose, it can be deleted without affecting the reasoning. This is

equivalent to removing variables created in sub-goals in a system such as Prolog. However

in DDL we do not have separate logical spaces for sub-goals; all reasoning is performed at

the same level. To do these 'cleaning up' jobs, we have a redraw rule 'del et e- obj ect ' which

is applied automatically as follows: If a redraw rule deletes an object, we automatically

apply del et e- obj ect to all dependent objects. That is, if a redraw rule R deletes an object

X (as happens in Figure 4.25, where both the point and the ball are deleted), we also delete

those objects created using X, and which usually have little meaning without X.39 For

example, suppose we have created a point x, followed by the point f(x). If we delete x, we

would then also delete the point f(x). Object dependency is formally defined in §4.3.2.

39 This is usually the desired behaviour. However there are cases where it is desirable to delete more
objects: sometimes intermediate objects, which are not of interest and could be deleted, are created
during the construction of some final object which we do not want to delete.
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Note that deleting objects involves throwing away information. It is therefore always sound

to delete an object, since this can only hinder the application of other rules (i.e. deleting an

object cannot allow a rule that shouldn't apply to apply). This is because we do not attach

any meaning to white-space, and hence cannot have rules that require the absence of an

object.40

Deleting objects will inevitably leave behind relations which are no longer meaningful. To

deal with these we have a rule del et e- r el at i on which is automatically applied to relations

that refer to non-existent objects (i.e. given diagram D, we delete r(x1...xn) to give diagram D'

if � i such that xi� l abel s(D)). Technically, this is not a redraw rule (because we do not

have a matching for xi). However it is sound, since again it only involves throwing away

information.

4.3 Formalising DDL
Our strategy in formalising DDL will be to separate diagrammatic reasoning into two

processes:

1) Parsing diagrams, when the different objects are identified and relations about them are

extracted from the diagrammatic representation.

2) Rule application and generalisation. Having separated this from the parsing stage, we can

specify it at an algebraic level (where diagrams are considered to be sets of abstract

objects and relations).

There are two elements of DDL that do not fit this framework however: the use of

diagrams-as-models in counter-example reasoning, and the use of

flexible-matching/condition-updating in exploring a conjecture. Formalising these aspects of

DDL requires extra machinery which will relate reasoning steps directly with the

diagrammatic representation. Eventually, this will involve us in a detailed examination of

the representations that reaches down to the level of how our diagrams are drawn (c.f.

§5.1.1).

4.3.1 Notation

We use the following notational conventions. Many of the terms listed here have not yet

been defined, but will be defined in this chapter. We have grouped all our notational

40 Other diagram logics may wish to actively use white-space. In such a logic, deletion would not
necessarily be valid.
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conventions in one place for convenient reference. There is also a glossary of terms in §10

which may be helpful.

	 Upper case letters (sometimes with subscripts or primes) are used for diagrams, redraw

rules and (within the context of a specific diagram) sets.

	 Underlined upper case letters are used for reasoning programs.

	 In the context of reasoning programs, let D - D' denote that D' is a child node of D.

	 Lower case letters (sometimes with subscripts or primes) are used for graphic objects.

	 Relations are written in the form r(x1,x2,...,xn) where r is the relation name and xi are

object names or constants. Relations may have any arity. However, since binary relations

are the most common, we will allow r(x,y) to represent an arbitrary relation.

	 �  has its standard logical meaning of “ implies” .

	 �  means “matches”  e.g. “A �  B”  is used for A matches B

	 � m� means “matches with mapping m”. Mapping functions are overloaded so that the

same name designates several different functions depending on the type of input.

	 � � means “ redraws to”  e.g. “D �  D' ”  is used for “D redraws to D' ”

	 R�  means “ redraws using rule R”

4.3.2 Diagrams

We define a diagram in DDL to be a set of graphic objects and a bag41 of observed relations

– portrayed graphically or algebraically. We write this as D=(objects, relations).

Meta Functions

We define the functions:

obj ect s:D ®  { graphic objects in diagram D}

r el at i ons:D ®  { observed relations in diagram D}

l abel :object ®  object label

l abel s:D ®  { labels used in diagram D}

These functions uniquely define a diagram (in that we have defined a diagram to be a set of

labelled objects and relations, and these functions give access to all these different parts of

the diagram).

41 Unlike a set, a bag (also called multi-set) may contain repeated elements.
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We will use several notational shortcuts. If A,B are diagrams, we write “obj ect s(A\B)” for

“obj ect s(A)\obj ect s(B)” , “ r el at i ons(A\B)” for “ r el at i ons(A)\r el at i ons(B)” and

“A� B”  for “ (obj ect s(A)� obj ect s(B), r el at i ons(A)� r el at i ons(B))” , etc.

Objects

Graphic objects are physical symbols, drawn on any flat surface (e.g. a computer screen or a

blackboard). All graphic objects must be labelled and have a clear type. Labels are created

in any suitable language. They are first class objects (i.e. the structure of a label carries no

meaning) and must be unique within the diagram. Objects that are identical except for labels

are allowed (these would be drawn as if they were one object with multiple labels, but are

treated as multiple objects). Object types are partially ordered (i.e. there are subtypes).

Formally, types are treated as a kind of relation. We assume here that the user can (a)

unambiguously separate out the different objects, (b) recognise the object's type, and (c)

identify the correct label associated with each object. These assumptions will be discussed

in chapter 5.

Dependent objects

The concept of dependent objects is used in object deletion (performed to improve the

clarity of a diagram; c.f. §4.2.8) and also appears as a condition on counter-example

reasoning (c.f. §4.3.5). Objects are dependent upon those objects used to create them, with

dependency also being transitive. Object dependency is defined below:

Definition 4.3.2.1: Object dependencies

An object x is dependent upon object y iff:

	 x was created by redraw rule R:T� T ' with matchings m1, m2 

and y� m1(obj ect s(T)).

or

	 x is dependent upon z and z is dependent upon y.

Write this as dependent (x,y).
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Constants

Constants are labels which can be used in relations without a corresponding object being

present in the diagram. The statement “e>0” in Figure 4.7 gives an example of this – e is an

object (the radial line of the ball) whilst 0 is a constant. When matching diagrams, constants

are mapped to themselves.

Relations

Relations are predicate statements ranging over graphic object labels and constants (e.g.

open(X) or f n(f,x,y)). Relations are divided into two basic categories: observed relations or

observations, which are 'known facts' that the logic can use, and unobserved relations,

which might be true in the diagram, but cannot be used in the reasoning. Typically,

unobserved relations are either irrelevant to the theorem (and so should be ignored), or

haven't yet been proved (and so cannot be used).

Observed relations are divided into explicit and implicit relations. 

Unless explicitly overridden, implicit relations can be read from the diagram without having

to be stated. They arise from the way the graphic objects are drawn, and are a key difference

between diagrammatic and textual representations. An example is that we do not need to

explicitly state relations of the form X� Y, since this information is implicit in drawing X

inside Y. Implicit relations are read according to a set of rules of the form: “ If r(x,y) appears

true in D and is not explicitly negated, then r(x,y) is observed in D” . We call these the

implicit relation rules. These rules introduce a link between the semantics of the diagrams

and the syntactic functioning of DDL, and require sound mechanisms for checking the truth

of the relations involved. It is intended that such relations will represent visually intuitive

concepts, but the mathematical semantics of a relation need not be simple. We introduce a

meta-predicate i mpl i ci t to state that a relation can be observed by the implicit relation

rules. Note that the implicit relation rules operate at the level of appearances. This means

that they must take into account the accuracy of the drawing/perception process. It also

means we have to detect when appearances are unclear. In such cases, the relation or its

negation (whichever is intended) is stated explicitly. We impose the condition on implicit

relations that:

i mpl i ci t (r(x,y)) � r(x,y) is true for all domain objects x', y' such that x', y' are

indistinguishable from x, y when drawn.

85



Explicit relations must be stated. They can be represented either graphically (such as using

the right angle symbol ) or algebraically, using labels to reference objects. If an explicit

relation contradicts an implicit relation, the explicit relation is taken to be true, and the

implicit relation is ignored.

We also define the special relation f al se - denoting that the diagram represents a situation

known/assumed to be false - the second order relation not (r(x,y)) – with the usual semantics

– and a special meta-relation called unknown, used for cancelling unwanted implicit

relations:

Definition 4.3.2.2: Unknown relations

unknown(r(x,y)) means r(x,y) cannot be observed from the diagram.

Equivalently, i mpl i ci t (r(x,y)) without unknown(r(x,y)) means 

r(x,y)� r el at i ons(D)

Implicit Inference Rules

As discussed in §4.2.5, when drawing an object, our choice of placement can unavoidably

create implicit relations beyond those intended. Some of these extra relations are unwanted.

However some of these unintended relations are beneficial. For example, if we draw A, B, C

so as to represent the relations A� B, B� C, we will also represent A� C. We could annul this

extra relation with the statement unknown(A� C), but since it is a valid and obvious

inference step, it would seem perverse to do so.

To distinguish between desirable extra relations and unwanted ones, we introduce implicit

inference rules. These specify the free rides that can be generated. They must be stated in

the specification of a DDL, and form part of the logic in the same way that the implicit

relation rules do. For example, for the �   relation, we have the implicit inference rules:

X� Y, Y� Z  �   X� Z

X� X

X� Y  �   f(X)� f(Y) [where f is the set-to-set extension of a function]

An extra relation is a free ride that should be kept if it can be derived from other relations

using the implicit inference rules. Any other extra relations are possibly false and should be

removed. Implicit inference rules are formally implemented as simple redraw rules. They are
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different in that (a) they are triggered automatically and (b) they are not presented to the

reasoner as separate steps in the proof.

Reasoning programs

A reasoning program is a rooted directed acyclic graph of diagrams with labelled arcs.

Either reasoning programs are created by starting with a root node and successively applying

redraw rules – in which case we say the program is constructed – or they occur as animated

antecedents. In a constructed reasoning program, we label the arcs between nodes with the

redraw rule and matching used to create that transition. These arc labels specify a sequence

of diagram transformations. This sequence can be applied to other diagrams (specifically,

any diagram which the program's root diagram matches) – hence the term 'program'.

A sub-program is a connected rooted sub-graph of a reasoning program.

A proof program is a reasoning program presented as proof of a conjecture. 

A reasoning chain is a reasoning program where each node has at most one child node.

Let D be a reasoning program. We define the functions:

di agr ams(D) = { nodes in D}

r oot (D) = { the root node of D}

l eaves(D) = { leaf nodes (i.e. those without any outgoing arcs) in D}

r ul es(D) = { redraw rules R used to construct D} (only defined if D is

constructed)

In animated redraw rules, the antecedent is a reasoning chain, with each edge labelled as a

strict or flexible transition (c.f. §4.2.7 for an discussion of this with an example). These two

types of transition are used to control quantifier type: Objects introduced by strict links are

universally quantified, those introduced by flexible links are existentially quantified. Any

nesting of quantifiers is allowed. However the animated rules we have explored are all of

the pattern: R:A1 -s- ... -s- An-1 -f- An � An+1 where -s-, -f- denote strict and flexible links

respectively. The pre-condition for a rule of this form could be read as: 

"  X1, ... ,Xm .(condi t i ons(Xi)  �   �  Y1, ...,Yk. condi t i ons(Yj) )  �   An+1

In constructed reasoning programs, each link is taken to be strict. We sometimes wish to

extract the quantification details from a reasoning program. This is done according to

definition 4.3.2.3 below.
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Definition 4.3.2.3: Q(D|D)

[Interpreting quantification in a reasoning program]

Given a diagram D in constructed reasoning program D, define a function 

Q(D|D) which returns the quantifiers of objects in D, nested according to the

quantifier hierarchy in D. Q is defined as follows:

Let D1...Dn be diagrams such that D1 is the root node of D, Dn=D and D1-...-Dn

form a chain in D.

Then let Q(D|D) = Q(Dn|D)

Q(D1) = " l abel s(D1)

Q(Di|D) = Q(Di-1|D)( Q(R).l abel s(Di\Di-1)), where R is the redraw rule used to

create Di, which must have a specified quantifier type (c.f. §4.3.3).

Diagram matching

Deciding which diagrams do and don't match is crucial to DDL. This is an area where

diagrams are more complex than algebra. Diagram matching performs an equivalent task to

unification and pre-condition checking in algebraic reasoning. For unification there is – at

least in first order logic – a canonical algorithm once it has been decided what constitutes a

variable. By contrast, it is not clear what elements of a diagram should be allowed to behave

like variables and change when matching, nor what differences should be allowed. For

example, consider the two triangles in Figure 4.14. Are they equivalent? Should they match

each other? Would they match a pentagon? We defer such decisions to later, locating them

in the decisions as to which relations can be represented implicitly. Definition 4.3.2.4 below

is both simple and general. Depending on the set of implicit relation rules, it could be used

in a variety of quite different logics.

Definition 4.3.2.4: Diagram matching

Say “diagram A matches diagram B”  if the following conditions hold:

�  a function m:l abel s(A) ®  l abel s(B) such that "  r(x,y)� r el at i ons(A), we

have r(m(x),m(y))� r el at i ons(B) 
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[note: this includes type relations]

Write A � m�  B for “A matches B with mapping m”

Let us illustrate this definition by considering Figure 4.14 again. First note that diagram

matching is not symmetric. A diagram for 'any triangle' can match a right angled triangle,

but not vice-versa. If right angles are implicit relations (i.e. can be inferred from the

drawing) but other angles aren't, then r el at i ons(A)={ t r i angl e(A)} and r el at i ons(B)=

{ t r i angl e(B), b1� b2} , where b1, b2 are the non-hypotenuse sides of B. Hence A would

match B, but B would not match A. However, if right angles are explicit relations, then

r el at i ons(B) is just { t r i angl e(B)} , and so B would also match A.

Note: For reasons of convenience and clarity, we will 'overload' the matching functions so

that they apply to objects as well as labels. If m is a matching from diagram A to diagram B,

then we can define m:obj ect s(A)® obj ect s(B) by m(a)=b �  m(l abel (a))=l abel (b).

The following definitions will be used in defining how redraw rules operate:

Definition 4.3.2.5: Diagrammatic Substitution

Say D'=D[a/b] if obj ect s(D')=obj ect s(D)\{ b} � { a}  and r el at i ons(D')=

{ r':r� r el at i ons(D), r'=r[l abel (a)/l abel (b)]}  where r[x/y] is r with all

occurrences of x replaced by y

Note that implicit relations must be taken into account when checking that r el at i ons(D')

=r el at i ons(D)[a/b]. Changing the object drawn can affect what implicit relations are

generated. As a result, both the unknown statements and the explicit statements may have to

be changed. Hence diagrammatic substitution is a more complicated procedure than

substitution in algebraic reasoning.

4.3.3 Redraw rules

Redraw rules form the core of DDL. They are the visual equivalent of rewrite rules. Rules

are defined by an example redrawing. This is coupled with a mechanism for applying the

rule to matching diagrams/reasoning programs which we define below. A theorem is stated

in the same form as a redraw rule (indeed, it is just a redraw rule that is not taken as an

axiom). A proof is a sequence of redrawings demonstrating that the redrawing operation
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shown in the theorem statement can be done using the accepted redraw rules. Although the

proof only modifies one diagram, it constitutes a redrawing program that can be applied to

any matching diagram.

We define four different types of first order (quantifying over diagram objects)42 redraw

rules: simple rules, branch rules, contradiction rules and animated rules. Note that these four

types can all be covered by one type of rule (animated branch rules). It seems more natural

though to treat them separately, since there is a clear split in their usage. We also introduce

three meta rules that are treated individually in §4.3.4.

Given a rule R that we wish to apply to a reasoning program D, let D be the leaf diagram in

D that we wish to redraw, and D' the new diagram we create. We define the notation

“ t ar get (R,D)” for D, and “R(D)” for D' (note that R is not a function, so this notation only

makes sense in contexts where D' has already been created).

Simple rules

A simple rule R consists of two diagrams – an antecedent T1 and a consequent T2 – where

the consequent is a modification of the antecedent. We write this as R:T1 � T2. We define a

function Q:r ul es® { “ " ” ,“ � ” }  by:43

Q(R) = { “ " ”  if R creates universally quantified objects, “ � ”  otherwise}

The result of applying a redraw rule will generally not be unique. Indeed, in many cases

there will be an infinite number of acceptable redrawings. Therefore a rule cannot be

applied without either the user or a heuristic choosing a valid redrawing.44

Suppose we wish to apply a rule R to a diagram Dp in reasoning program D, redrawing Dp to

give diagram Dp+1 (in extended reasoning program D'). If this redrawing is a valid

application of R, then we write this as Dp
R� Dp+1 (for a simple rule) or D R� D' (for an

animated one). 

42 Since diagram objects include functions, this includes some statements that are 2nd order predicate
logic statements.

43 As discussed in §4.2.7, our rules create either universal or existential objects, but not both.
44 Note that an acceptable redrawing will not necessarily be a good (i.e. clear and easy to understand)

redrawing.
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Definition 4.3.3.1: Simple rule application

Let changes be the function:

changes(A,B)=(l abel s(B\A), l abel s(A\B), r el at i ons(B\A), r el at i ons(A\B))

i.e. changes(A,B) lists the objects created and deleted, and the relations created

and deleted, when moving from diagram A to diagram B.

D1 �  D2 is a valid application of rule R:T1 �  T2 if the following conditions hold:

(a) Matching: �  m1, m2 such that T1 � m1�  D1 and T2 � m2�  D2 and m1=m2 where

defined

Equality of Changes:

(b)changes(D1,D2)=changes(m1(T1),m2(T2)), where mi(Ti) is the diagram Ti with

all labels changed to their images under mi  

Branch rules

Branch rules handle case splits by splitting the reasoning program into multiple branches,

one for each case. 

Definition 4.3.3.2: Branch rule application

D0 �  D1 ... Dn is a valid application of rule R:T0 �  T1 ... Tn if

" i� { 1...n} , D0 �  Di is a valid application of Ri:T0 �  Ti as in definition 4.3.3.1.

Contradiction rules

The opposite of introducing a case split is to eliminate a case by showing it cannot exist –

i.e. by finding a contradiction. We introduce the symbol “ f al se” to signify a contradiction.

f al se is defined as a graphic object, and contradiction rules are handled as a type of simple

rule. The absence of variables that quantify over relations means we need multiple

contradiction axioms (i.e. for each relation R, we need a separate rule { R and not (R)} �

f al se).

Animated rules

An animated rule has a reasoning chain as its precondition, with each link labelled as either

st r i ct or f l exi bl e (c.f. §4.2.7 for an informal description). For simplicity, we restrict

animated rule consequents to adding relations and performing deletions (since this is all that

we have needed in our work, and possibly covers all cases where we would want to use

animated rules). Before defining how these rules operate, we must first define matching
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between two reasoning programs. There are two parts to this definition: one for 'normal'

matching, and one to handle vacuous quantification, as discussed in §4.2.7.

Definition 4.3.3.3: Program matching I 

Say “ reasoning program A matches reasoning program B with mapping m”  if �

functions m:l abel s(A)® l abel s(B) and m:di agr ams(A)® di agr ams(B)

(overloading the matching function again) such that:

(a) "  diagrams A� A, � � diagram B� B such that A� mA� B, where mA=m

restricted to A.

(b) "  diagrams A,A'� A let B,B' be the diagrams they match. If A' is a child of A

then B' is an ancestor of B.

(c) "  diagrams A,A'� A such that A-A' is a strict link in A, then let B,B' be the

diagrams they match and N be the simple redraw rule N:A� A'.

We require B 
N� B' as defined in definition 4.3.3.1.

(d) "  diagrams A,A'� A such that A-A' is a flexible link in A, let B,B' be the

diagrams they match and N1...Nk be the redraw rules used to draw B' from B.

Then we require Q(Ni) = “ � �  for all i� { 1...k} .   

(e) If A is the leaf node of A, then m(A)� leaves(B)

Note: condition (c) in definition 4.3.3.3 is what ensures the chain of reasoning is as general

in reasoning program B as it is in program A. It also means that a strict link in a reasoning

program defines a redraw rule (essentially, a strict link is a simple redraw rule).

The matching process defined above is loosely illustrated in Figure 4.15. This shows the

animated pre-condition for recognising an open set (c.f. Figure 4.9) being matched with the

diagrams of a target reasoning program.
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Definition 4.3.3.4: Program matching II (vacuous quantification case)

Say “ reasoning chain A matches reasoning program B with mapping m” , where

A=A1...An, if �  functions m:labels(A)® labels(B), m:diagrams(A)® diagrams(B)

and �  j>1 such that:

(a) A1...Aj matches B' a sub-program of B with mapping m using 

definition 4.3.3.3

(b)Aj-1-Aj is a strict link in A

(c) � x� obj ect s(Aj\Aj-1) such that not (� m(x))� r el at i ons(Bk), 

where Bk� l eaves(B) is an ancestor of diagram m(Aj)

Definition 4.3.3.5: Animated rule application

D �  D' is a valid application of rule R:T �  T ', where T, T ' are reasoning chains,

if:

(a) Matching: � m, m' such that T� m� D, T '� m'� D' and m=m' where defined.

(b)Redraw: obj ect s(Dd+1)� obj ect s(Dd), 

r el at i ons(Dd+1\Dd)=r el at i ons(Tt+1\Tt)

For an example of how definition 4.3.3.4 is used, please see the proof that the empty set is

open, included on the accompanying CD-ROM
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Condition updating – an implementation of strategic withdrawal

With definition 4.3.2.4 for diagram matching, the original diagram must state all the

conditions that will be required in the proof. This is of course the normal way to work.

However a more flexible form of matching is possible which allows us to start without

specifying conditions, and extract the correct generalisation from the reasoning used in

proving the theorem. This is possible because of the link between diagrams and models,

which makes it simple to test conditions as we reason. We call this way of working

condition updating. It uses a modified version of the matching definition (given below)

together with a procedure for incorporating new conditions into the reasoning.

Definition 4.3.3.6: Adaptive diagram matching

We say “diagram A matches diagram D in D to give diagram D' in D' ”  if: 

�  a function m:l abel s(A) ®  l abel s(D) such that:

(a) "  r(x,y)� r el at i ons(A), either r(m(x),m(y))� r el at i ons(D), 

or r(m(x),m(y)) is true (but not observed) in D.

(b)D  ' = updat ea(D), D' = updat ea(D)  as defined below by 

definition 4.3.3.7.

This differs from definition 4.3.2.4 in that the observed relations in diagram A need not be

observed relations in diagram D, as long as they are true. Suppose diagram A is the

antecedent to a redraw rule R that we wish to use in a proof. When we find a relation r(x,y)

in A such that r(m(x),m(y)) is true (but not observed) in D then we have discovered a new

condition necessary for the proof to work. We can use the rule, but it is then necessary to

modify the conjecture we are working on to take the new condition r(m(x),m(y)) into

account. This involves adding r(m(x),m(y)) to the initial diagram (and all diagrams in the

reasoning program) – which can cause other changes to the reasoning program. We call this

process the condition update, and it is defined as follows: 

Definition 4.3.3.7: Condition updating

Suppose diagram D is part of reasoning program D, and we wish to match

diagram A to D.

" relations r(x,y) in r el at i ons(A) such that r(m(x),m(y))� r el at i ons(D), the

relation r(m(x),m(y)) is added to all diagrams Di in D
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Pruning

Suppose m(x) is an object created during the proof, and therefore is not present

in r oot (D). Clearly a condition cannot be added if it concerns an object that isn't

in a diagram. We deal with this by shortening the reasoning program so that the

existence of object m(x) becomes part of the theorem antecedent.

Let Di be the diagram in which m(x) is first drawn. Then the reasoning program

is 'reverse pruned' to make Di the root node of the 'updated' program D'.

Everything but Di and it's descendant nodes is thrown away, and Di becomes the

new, more limited, statement of the theorem antecedent. We call this making a

pruning cut at Di.

One effect of this is to prevent assumptions being made within only one branch

of a case split (which would invalidate the case split if allowed).

 

Conceivably, pruning could interact with the application of an animated rule by

'cutting' the section of the reasoning program that the animated rule matched.

E.g. suppose Ra: T1-...-Tt � � T' is an animated rule that was used in drawing D

with T� n� D, and r el at i ons(T'\Tt) = { p(a,b)} . If we later make a pruning cut at

Di and n(T1) < i �  n(Tt) (i.e. if we cut the program in the middle of the

pre-condition for Ra), then we can no longer apply the rule Ra to all reasoning

programs D' that match D. We cannot envisage a scenario in which this would

naturally happen, but it is a logical possibility.

In such a case, since we can no longer guarantee that rule Ra can be applied, we

add its post-condition p(a,b) as an extra assumption. This could entail further

pruning. However since the program is of finite size, and each pruning cut

reduces its size, the update process will always terminate.

When matching diagram A to diagram D, we refer to the changes made in the condition

update process as updat eA, and write D' = updat ea(D) and D' = updat ea(D). Note that this

notation is underspecified in that there may be several possible matchings for A, with

different effects. This will not bother us though, as we will always talk of updating D within

the context of a specific matching.
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We give an example of this procedure in Figure 4.16. The triangle S in diagram A has

r i ght - angl ed(S) as an observed relation. It is allowed to match triangle T in diagram D

(where this relation is true but unknown), provided D is updated (giving reasoning program

D'). The update process adds in the r i ght - angl ed(T) condition to all diagrams in D. Since

the initial blank diagram of D cannot represent r i ght - angl ed(T), this requires a pruning cut

that removes part of the program.

Condition Updating and inaccurate diagrams / untestable relations

Condition updating makes use of the link between diagram semantics and models. This

means that it requires accurate diagrams to work reliably. However it does not require

accurate diagrams for it to be sound. Suppose we have somehow created an inaccurate

diagram. Then condition updating might allow us to reach a conclusion which is false even

for the model under consideration. However in doing so, it would also add extra

pre-conditions to the conjecture which would guarantee – if met – that the reasoning
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worked. It might turn out that these pre-conditions were impossible to meet, in which case

the resulting theorem would be true, but vacuous.

To work properly, condition updating also relies on us being able to semantically test

relations in the diagram. Implicit relations (such as A� B) will always be testable. However

there are relations such as open(X) which we cannot, in general, test. In such cases, we can

still use condition updating by assuming that the condition holds. As with inaccurate

diagrams, this would not lead to unsound conclusions, but could lead to a theorem that

whilst seemingly meaningful is in fact vacuous.

4.3.4 Meta rules

It should be possible to devise a higher-order visual language (i.e. a language that allowed us

to quantify over reasoning-programs and redraw-rules) for representing meta-rules. The

representation of meta-rules in � � � � � � �� (c.f. Figure 4.17) indicates how this might be

done. However since we use only three rules which can't be formulated as normal redraw

rules, we have treated them as special cases. The first of these rules is the implicit inference

rule regarding specific objects, which will be dealt with in §4.3.5. The other two rules are

mer ge and ext r act - r ul e.

Merge rule

The merge rule states that “what is true in all branches, is true generally” . It allows us to

draw separate branches of a reasoning program back together.

Definition 4.3.4.1: Merge rule

Given reasoning program D, let { Di}  = { D� l eaves(D) : f al seÏ r el at i ons(D)}

If { Di} � � , then let D' be the diagram:

D' = ( { x : " Di, x� obj ect s(Di)} , { r(x,y) : " Di, r(x,y)� r el at i ons(Di)}  )

Let D' be the reasoning tree D' = D� D' where D' is a child node for all Di

Then D �  D' is a valid application of mer ge
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Extract Rule

The extract rule allows us to create new redraw rules from reasoning programs.

Definition 4.3.4.2: Extract rule

Given reasoning program D with root diagram D0, 

let D1...Dn ={ D� l eaves(D) | f al seÏ r el at i ons(D)} and define ext r act - r ul e

(D) to be the rule R:D0 �  D1...Dn

4.3.5 Counterexamples

Specific objects

In §4.2.8 we discussed how diagrams can be used to present counterexamples. This involves

using graphic objects that are specific. Specific objects are both existentially quantified and

fully observed, where fully observed means that the object's parameters (e.g. the coordinates

for a point, the membership formula for a set) are known and can be used in the reasoning. 

Note that usually the object's precise parameters will not be important. For example, in

Figure 4.13 the position of the point x (inside B and X but not Y) is important, but its precise

coordinates are not. Stating the coordinates would therefore clutter up the diagram with

unnecessary explicit relations. Instead we introduce a new meta-relation specific to state that

an object is specific, but without precisely specifying which object it is. Specific objects do

not generalise, and therefore anything that is true about the object drawn can be taken as

true without it being proved for the general case. Hence any relations involving specific

objects that are true in the diagram are added to the observed relations (i.e. the

corresponding unknown relations are removed). 

This is implemented as follows, using a special implicit inference rule. We call a physical

diagram accurate if the drawing of the diagram objects will serve as a model for those
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objects. Let � be a physical diagram created from an idealised diagram D, and suppose we

have a predicate accur at e for determining when � is an accurately drawn diagram (this

predicate is defined in §5.2.1.2 along with a cautious algorithm for evaluating it). Then:

i mpl i ci t (r(x,y)) and speci f i c(x) and speci f i c(y) 

and accur at e(� ) �   r(x,y)

Note that only top-level existentially quantified objects can be specific. It would not make

sense to talk about a “universally quantified specific point” , or a specific point x=(1,1)

within an arbitrary set X. Hence if an object is made specific, all the objects it depends upon

must also be specific. This requirement is implemented with the pre-condition for creating

specific objects that:

speci f i c(x) and dependent (x,y) �   speci f i c(y)

In principle, specific but roughly drawn objects could be used outside of counter-example

reasoning. However it is not clear that they have any useful role in proving theorems of the

form " x.p(x)� q(x). Incorporating them into normal redraw rules would require an

adjustment to the matching criterion, since meta-predicates such as speci f i c and accur at e

cannot be treated like other relations (the adjustment required is to add the condition that, if

speci f i c(x)� r el at i ons(D), then D� m� D' only if m(x) and x refer to identical objects –

i.e. � (m(x)) = � (x)). However, since the speci f i c relation does not appear to have any

clear uses outside of counter-example reasoning, we will instead restrict its use to

counter-example proofs.

Counter-example proofs

A counter-example proof consists of a reasoning program D constructed from a blank

diagram D0 using rules D� { R} , such that f al se� r el at i ons(D), " D� l eaves(D), from

which we conclude that if D is sound then R is not sound. Note that DDL does not have

mechanisms for then using this result elsewhere. That is, we do not automatically turn

not (R) into a lemma (c.f. §8.2.4).

4.4 Using dynamic diagram logic for analysis
We now look at adding a representation scheme to the DDL framework set out above. This

representation scheme will cover a range of analysis objects and concepts, giving a diagram
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logic for doing analysis proofs, which we call DDLA. We assume standard definitions for

the basic objects in the domain.

4.4.1 Scope of DDLA

Our aim here is not to give a diagrammatic axiomatisation of analysis. Whilst this would be

an interesting project, it goes well beyond the scope of this work. Our aim is to give a sound

deduction system based in analysis which can prove an interesting range of theorems.

DDLA covers the concepts of open and closed sets and monotonic and continuous functions.

It does not cover some key aspects of analysis, including sequences (except in a very

restricted way), differentiation and integration. In §8.2 we explore some ideas for extending

this logic to cover these concepts, but these are not developed enough to be formalised yet.

4.4.2 Design issues in DDLA

The goal of DDLA is to give a formal system for reasoning in real analysis that can replace

conventional algebraic approaches and is more natural. This introduces conflicting design

goals between the power of the logic (what can be expressed and what can be proved) and

its appeal (how easy it is to use). There are also conflicts within these goals: what is

appealing for one area may not generalise well to others, plus the trade-off between

simplicity45 and flexibility which cuts across these goals.

Inevitably, these conflicts mean that the solutions we arrive at are compromises. We have

already seen compromises between these goals in the set-up of the DDL framework, and we

will see more here. As such, our solutions are sub-optimal for some cases (“a jack of all

trades is the master of none”). It is important to remember that in designing DDLA we are

not attempting to build the canonical system for analysis reasoning, since it is unlikely that

such a thing is possible. Note also, that a good design for reasoning in analysis, may not be

as suited to other domains (and vice-versa). Different design choices are possible, leading to

different logics. Ideally our choices would be made on the basis of theory backed up by

experimental results. Unfortunately we are not in a position to do that, as DDLA is the first

such project in this domain.46 Instead, we must make design choices on the basis of our own

judgement, and hope that the evaluation will justify them.

45 Note that elegant representation schemes do not necessarily correspond to elegant formalisations.
Simple diagrams can sometimes require a more complex logic to formalise them.

46 When exploring, you cannot consult the map.
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4.4.3 Objects

DDLA covers only a subset of objects in the domain. We call these the drawable objects.

Below we set out the different object types in DDLA, and the drawable objects for each

type. Figure 4.18 gives an overview of object types and their representations.

Numbers

All numbers in � are drawable, plus infinity. Numbers are a 'virtual type'; they always occur

in the form of one of their subtypes.

Points

All points in �  and � 2 are drawable.

Lines

All line segments between two drawable points are drawable. Lines do not have a direction

(e.g. L from a to b = L' from b to a). Lines are a subtype of Numbers, with a line segment

from a to b automatically cast to the value ||a-b|| within numerical statements.
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Area Blocks

Area Blocks are a subtype of Numbers, equated with the value of their area.

The following basic area blocks are drawable:

	 [a,b]
 [c,d] " a,b,c,d� � +

The following rule constructively defines other drawable area blocks:

	 X, Y drawable area blocks  �   X� Y, X� Y drawable area blocks

Sets

Here we define several basic types of set, plus rules for composing these to create structured

sets. In order for us to then reason about these sets, we have redraw-rules that work on type

and structure (e.g. the set-union rule in Figure 4.26). This approach is not as powerful or

flexible as the standard approach of defining sets by membership functions. However it is

better-suited to the drawing-based reasoning we examine, as there is a clear link between set

definitions and set drawings.

The following 'basic' sets are drawable:

	 The empty set �

	 Singleton sets for all drawable points

	 (a,b)
 (c,d) " a,b,c,d� �

	 Open 'blob' sets – amorphous shapes which loosely fit any rectangle. We require that

these blobs be (technically) centred (also called star-shaped). That is given a blob set B,

�  a point c� B such that " b� B, the line bc� B. The need for this condition is not obvious.

It is added to prevent a specific type of error where a set's representation is misleading

(c.f. §5.3), and does so at the cost of excluding many non-problematic sets. A more

satisfying solution – though harder to formulate – would be to outlaw sets whose

physical drawing can be mis-interpreted.

For each basic set, we must be able to determine whether a given point is within the set or

not.

The following rules recursively define a large class47 of drawable sets:

	 X a drawable set � the Cauchy closure of X (i.e. X plus 'border points') is a drawable

set.

47 Note that if we allowed infinite unions of sets, we would get the Borel sets for � , � 2 (a common
definition for measurable sets in real valued spaces).
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	 X a drawable set � Xc is a drawable set (where the set complement is taken relative to

the enclosing Euclidean space).

	 X, Y drawable sets �   X� Y, X� Y drawable sets

	 X a drawable set, f a drawable function �  f(X) is a drawable set (where defined)

	 X a drawable set, f a drawable function �  f -1(X) is a drawable set (where defined)

Euclidean Spaces (a subtype of Sets)

The only drawable Euclidean spaces are � , line segments in � , and rectangular

sets in � 2

Balls (a subtype of Sets)

All balls are drawable:

	 Br(x) = { x' : |x-x'|<r}   " r� � , " x� � 2  

1D Sets (a subtype of Sets and Lines)

The following 1D sets are drawable:

	 (a,b) " a,b� � � { � }

Plus those which can be created using the construction rules for sets.

We also define a special instance of 1d-set as a constant:

	 � + = (0, � )

This constant is not necessary from a logical point of view. However it simplifies

some diagrams.

Functions

Since 2D functions cannot be plotted (it would require 4 dimensional drawing), diagrams are

unsuitable for exploring specific functions. Hence we only have a very limited set:

	 The 'stretched identity function' fXY is a drawable function " X,Y Euclidean spaces

(this function is defined by: fXY linear, fXY maps X onto Y without rotation or reflection)

	 The constant functions f(x)=y are drawable functions "  drawable points y

	 f, g drawable functions from X to Y, A� X a drawable set  

�    x ®  { f(x) if x� A, g(x) otherwise}  is a drawable function

	 f:X ®  Y, g:Y ®  Z drawable functions   �    x ®  g(f(x)) is a drawable function
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When working in 1D the following basic functions are drawable:

	 x ®  x

	 x ®  c " c� �

	 x ®  si n(x)

Plus those constructable using the rules:

	 f a drawable function  �   x ®  1/f(x) is a drawable function.

	 f, g drawable functions  �   x® f(x)+g(x), x® f(x).g(x), x® f(g(x)) are drawable functions.

This allows step functions and polynomials amongst others. It excludes functions with

infinite discontinuity, such as f(x)={ 1 if x� � , 0 otherwise}

Note that although a function may be drawable, DDLA cannot reason about it without a

redraw-rule based definition. In particular, we do not yet have such a definition for si n(x);

this function is included as drawable only because it makes a good visual example.

Sequences

Because of the lack of support for natural numbers and proof-by-induction, DDL is not

really equipped to reason about sequences (c.f. §8.2.5 for a discussion on how DDL could

be extended to do so). We cannot define or reason about specific sequences in DDLA.

However, we do introduce sequence objects which can be used to prove some theorems

relating to arbitrary sequences. All sequences in � 2 are drawable, but very little can be said

about them. Since we will only reason about sequence properties which depend on

behaviour in the limit (e.g. convergence), all relations involving sequences are defined for

the sequence head (i.e. we say r(xn,y) holds if � N such that r(xn� N,y) holds. 

4.4.4 Constants

We require the following constants:

	 0, 1, � ,� �

	 A constant for each object type

	 A constant for each of the basic functions

4.4.5 Representations

Object Representations

This describes how we draw different graphic objects. It defines bit-by-bit a drawing

function, � , that converts idealised diagrams (made up of drawable domain objects) into
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physical drawings. All drawing is done with a rounding approximation of e. This means

objects whose representations given perfect drawing would differ by less than e, have

representations which cannot be distinguished. The implicit relation rules will take this into

account, so that r el at i ons(D) reflects that drawing is imperfect. The value of e is not fixed

since it depends on (a) the limitations of human vision, (b) the limitations of the drawing

equipment used, and (c) the drawing scale. It should be chosen conservatively to ensure

mistakes cannot be made.

Numbers

In a real valued domain, we require a representation scheme for numbers that is itself real

valued. The representation should represent ordering (i.e. a<b), and as much as possible, it

should also support the arithmetic operations: +, -, x and ÷. We consider four options here:

1) Use a number line, with numbers represented as points on the line, positioned according

to size.

This representation is simple, intuitive and probably already familiar. It is good for

representing functions too (using 2 number lines as graph axes). It represents ordering,

and provides transitivity of ordering as a free ride. However it is not good for showing

relations between numbers other than total ordering. For example, when representing a, b

and a+b, a-b, a.b, a/b, a number line does not show the relations between these points. 

2) Represent numbers as line segments, arranged parallel to a main number line, and

positioned according to how they are created. Figure 4.19 provides an example.

This is also simple and reasonably intuitive. It allows addition and subtraction to be

performed as graphical operations, and gives a number of free rides for these relations: 

	 Addition/subtraction preserve ordering, (e.g. x>y  �   (x+z)>(y+z))

	 Addition/subtraction as inverse operations

	 Associativity (e.g. (x+y)+z = x+(y+z))

It is not a suitable representation for graphing functions though, because not all line

segments have a common origin.
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Bringing in multiplication

The 'obvious' way to perform multiplication is by taking two lengths at right angles and

considering the area of the rectangle they form. This is fine some of the time. However we

also need a way of converting such rectangles into the same form as the original numbers

(e.g. consider performing 2x2 – 3). For whole numbers, this is easy – the rectangle can be

rearranged from a 2D matrix into a 1D strip (c.f. Jamnik's choice of representation for

DIAMOND [24]). For real-valued arithmetic, it is less clear how this should be done.

3) Represent numbers produced by multiplication as area blocks (see Figure 4.20).

This allows multiplication to be performed graphically, and gives some free rides (e.g.

order preservation: x>y � x.z>y.z and distribution over addition: x.(y+z)=x.y+x.z ). It

allows addition and subtraction to be performed if the blocks have suitable sizes (e.g. 2x2

– 1x2 is possible, 2x2 – 1x3 is not). Area blocks don't support addition and subtraction in

general, though, are not suitable for plotting graphs and take up more space than a

number line. They also cannot represent negative numbers unless we introduce the

concept of signed area, which is less intuitive.

4) Hybrid Representation

It is possible to use a representation that switches between the above methods as

appropriate, giving representations tailored to the problem under consideration. This

potentially gives us the advantages of all of the above methods. However it could easily

involve (if not require) several different representations of the same number at the same

time, which might be confusing. Also, switching between representations might be hard

to automate, in which case the user would have to perform it, which could get annoying.
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Conclusion

We use a hybrid representation, combining all of the above according to the following rules:

1) The default option is to draw numbers as points on a horizontal or vertical number line .

2) Numbers are drawn as line segments (a) when two numbers (points or line segments) in

the same number line are added or subtracted, or (b) when a ball is added (as the radial

line).

3) Numbers are drawn as area blocks (a) when two positive numbers (which can be either

points or line segments) on opposing graph axes are multiplied, or (b) when two area

blocks are added or subtracted (as long as one of the original blocks fits inside the other

– otherwise this would create negative areas). Where necessary, the user must explicitly

convert area blocks into points.

4) If a number has two distinct representations in a diagram, one of which isn't generating

any implicit relations, then this representation can be removed at the user's request.

Points

Points are drawn as small circles. Suppose x is a point, and � (x) is the graphic object it is

drawn as, then given a rounding approximation of e, � -1(� (x)) = { x': |x-x'|< e} (i.e. x could

be read as any point within e of its true position).

Lines

Lines are drawn as lines. A line to or from � ends in ellipsis to indicate that it continues to

infinity. Line segments within a number line are drawn slightly offset so that they are visible

against the number line. Two lines are indistinguishable if and only if their end-points are

indistinguishable. Hence a line L=ab may be read as any line in { L' : L'=a'b', a'� � -1(� (a)),

b'� � -1(� (b)) }

Area Blocks

Area blocks are drawn as rectangles shaded transparent grey without borders.

Sets

Basic sets are represented by drawing their border line (the way in which the border is

drawn depends on whether the set is open, closed, or neither/unknown). Note that for all of
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the basic sets, this border will be a simple closed curve48. Compound sets (i.e. Z=X� Y or

Z=X� Y) are represented by drawing the sets X, Y from which they are formed and shading

the interior of the compound Z. Similarly, for complement sets Z=Xc, X is drawn, and the

interior of Z is shaded. If two or more shaded sets overlap, the shading is darkened to

indicate that the overlap is contained in both. There are sets in the domain for which this

representation is inappropriate (e.g. highly disconnected sets). However it is a suitable

representation for proving many important theorems. Sets created by the application of a

function or an inverse function (i.e. A=f(B) or A=f -1(B)) are drawn as blob sets within a

bounding box. This box is calculated by mapping the box of the pre-image set, then fitting a

blob to that box. This representation is not generally accurate.49 However since the idea of

the blob shape is to suggest a lack of knowledge about the set's form, it should not normally

be misleading.

Euclidean Spaces

Euclidean spaces are represented as rectangles. Their border represents infinity.

Balls

Balls are represented as circles, with a centre and a radial line.

1D-sets

1D-sets are represented as lines. Sets that extend to infinity are drawn ending in ellipsis (to

convey continuation beyond what is drawn). This is consistent with the representation for

lines. 1D-sets are assumed not to include their endpoints by default.

Functions

When working in 2D, functions are represented as arrows between Euclidean spaces. This is

quite a weak representation, since whilst it shows the functions range and domain, it says

nothing about what kind of function it is. Unfortunately, we would need 4 dimensions to

plot a function from � 2 to � 2. When working in 1D however, functions are represented by

48 A simple closed curve is a continuous function f:[0,1]® X such that f(0)=f(1) and f is injective on
(0,1). i.e. a loop.

49 This representation is accurate for linear functions with positive determinants (i.e. stretches,
translations and rotations), where the image/inverse of a blob is just the blob that fits the
appropriately transformed bounding box. It isnot accurate for most non-linear functions, where the
blob shape may be transformed in arbitrary ways.
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plotting them on graph axes. This representation is much more informative, revealing at a

glance the function's behaviour up to resolution issues. 

In order to reason about specific functions we need a way of accurately recognising them.

This is done by adding algebraic statements (e.g. f=sin). Functions without algebraic

descriptions are interpreted as (stretched) identity functions. At present we do not include

any reasoning that leverages the diagrammatic representations for extra power (e.g.

reasoning about functions from their graphs).

Sequences

Sequences are drawn as a string of 3 consecutive points from the sequence with an arrow

passing through them (indicating the order of the points). The arrow then points away,

indicating that the sequence continues (see Figure 4.18).

Relation Representations

This section covers both the default interpretations that give rise to implicit relations, and

the representations used for explicit relations.

Type

Object type is an implicit relation, as is object subtype. t ype(x,y) is read as “object x is of

type y” , whilst subt ype(x,y) is read as “ type x is a subtype of type y” . In general, object type

and object subtypes are not intuitively obvious and must be learnt. However once learnt,

object type is made clear by an object's representation, and for object subtypes there are only

a few relations to be learnt. The type tree is shown in Figure 4.18.

Subset

Subset is normally an implicit relation. A� B is represented by drawing A clearly inside B.

Both subset and the inside/outside relationship are partial orders (that is, they exhibit

transitivity, identity and anti-symmetry), so these properties of the relation are contained in

the representation. As with any implicit relation, unknown statements can be used to

override the implicit relation rule above. Note that although A� B is an implicit relation,

not (A� B) is not. That is, the fact that an object is drawn outside a given set, does not allow

us to infer that it is never inside. Subset is only inferred for points, sets, sequences and

numbers in line-segments.
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Membership

Membership is treated in the same way as subset.

Open

Open sets are represented by drawing the border of the set with a dashed line. This signifies

that the border is not part of the set. It is an old device, and may well be familiar to users.

Technically, the dashes should be black and grey rather than black and white so that the

border line remains a solid curve. However we will assume that the border line is clear even

when drawn with a dashed line.

Closed

Closed sets are represented by drawing the set with a double border. The inside border is

drawn in grey, the outside in black. Points drawn between the two borders are interpreted as

being on the border of the set. Where there is not an inside border (i.e. the set has sections

that are either lines or points), a double border is used (extending by necessity some way

outside of the set). The exceptions to this are Euclidean spaces, where being closed is an implicit relation.

Centre, radius

The centre and radius of a ball are implicit relations.

Set union and intersection

Relations such as A=X� Y are represented implicitly.

Line end-points

The end-points of a line are represented implicitly.

Function relations and inverse relations

Relations such as y=f(x) or B=f -1(A) are represented by an arrow from the original object

(e.g. x or A) to the object created by the function application (e.g. y or B). This

representation should be both intuitive and familiar. These arrows are drawn in grey, which

we found made the diagrams easier to read – perhaps because it makes function relations

easily distinguishable from objects. When working in 2D, these arrows are labelled with the

name of the function (f, f -1 ). When working in 1D, the arrows are drawn using the

function's graph, as shown in Figure 4.21. This should also be intuitive and familiar.
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Arithmetic relations (+,-,x,÷)

The relation x=y.z for x an area block and y, z points marking the corners or line segments

marking the sides is an implicit relation. The relation x=y+z for x, y, z line segments

arranged in the format of Figure 4.19 is an implicit relation, and similarly for x=y-z. All

other arithmetic relations are stated algebraically. See §4.4.5 for a discussion of this.

Equality

In 2D, equality between graphic objects is an implicit relationship. a=b is represented by

drawing a and b as the same object, but with two labels. The rule for observing these

relations is:

If � (a)� � (b) �  Æ, then a=b is an observed relation

When two objects a, b are plotted close to each other but are not known to be equal, the

statement unknown(a=b) must be added to prevent this observation.

Note that although a=b is an implicit relation, not (a=b) is not. That is, the fact that two

objects are drawn differently does not allow us to infer that they are never equal. This is

slightly counter-intuitive, but means that we don't have to continually treat such cases

separately.

In 1D, the same domain object can have two distinct representations, since � can be drawn

both horizontally and vertically to give graph axes. Where needed (i.e. where a=b but

� (a)¹ � (b)), equality is represented algebraically.
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Ordering

Ordering (i.e. the relations x>y, x<y, x� y, x=y) is represented algebraically. This was

probably a mistake. In most cases, ordering fits the criteria for being an implicit relation,

namely that the truth or falsity of the relation is apparent from the drawing of the two

objects. The exception is size ordering between line segments with different origins, where

the relative sizes of the lines are not always clear. Unfortunately, the decision to represent

ordering as an explicit algebraic relation is now embedded in our computer implementation

and was used during our evaluation experiments. Changing this must be left as future work.

Equal-size

This is usually represented algebraically using the equals sign – which it thus overloaded in

the usual way. However this only occurs between objects of different type (specifically, the

three forms of number representation: area-blocks, lines and points). The clear visual

difference between the different types means that this use is unambiguous. Hence a diagram

D=({ x,L} ,{ poi nt (x),l i ne(L),x=L} ) states that x and L are equal-size – not that x is a line

and L a point. When we wish to say two objects of the same type, A, A', are of equal size

(though not equal), we represent this as |A|=|A'|.

Continuity

In 1D, continuity is represented graphically: continuous functions are plotted with a

continuous line, whilst functions which may or may not be continuous are plotted with

dashed lines. In 2D, continuity is represented algebraically (e.g. ct s(f)).

Convergence

Convergence is represented graphically: xn® x is represented by an arrow flowing through

the points of xn (i.e. the sequence representation) which finally points to x.

False

f al se is drawn as a big red cross over the rest of the diagram, indicating the situation

represented is not possible.

All other relations

All other relations are represented algebraically. The notation used varies between infix (e.g.

a=b) and prefix (e.g. ct s(f)) as appropriate for each relation.
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Quantifier Representations

Rules with mixed quantifiers are expressed using animated pre-conditions (c.f. §4.2.7). Such

rules can be presented in at least two ways: using a 'TV' representation (where only one

diagram is visible, and animated pre-conditions are indeed animated), or using a 'comic-strip'

representation (where each diagram in the chain is shown). We anticipate that the TV

representation will be easier to work with.

This still leaves open the question of how to represent the quantified objects. We could

simply reinstate the algebraic symbols " , � � and represent quantifier type by labelling

objects with them. However diagrams also allow other, potentially more interesting,

possibilities. These include some form of drawing convention, such as colour-coding or

using different shaped objects. Or - since quantifiers are introduced one at a time - quantifier

type can be represented by having different transitions between frames in the animation.

Any of these representation methods would be sufficient to distinguish the two quantifier

types, but they have different advantages. Using the established symbols gives the user

something they may already be familiar with. Colour-coding is 'cleaner' since it does not

introduce extra labelling, and this may aid comprehension.

Both of the above methods rely purely on convention for their meaning. However, since

quantifier behaviour (i.e. their syntactic meaning) comes from the diagram transitions, using

special transitions can attempt to convey the difference in meaning. These special transitions

are animations of a different kind. They are independent of the reasoning rather than a part

of it. For example, a universally quantified point could 'roam it's habitat', indicating that it is

not a specific point. With an existentially quantified object in a rule antecedent, the

transition could indicate 'miscellaneous drawing' to illustrate that, when applying the rule,

other unspecified constructions will probably be necessary at this stage. Such an approach

would probably not be of interest to professional users, but could be helpful in teaching

applications. However the quantifier type is not visible in the final diagram. To a certain

extent, the strengths and weaknesses of these representation methods complement each

other, and so they can be combined. 
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We use a combination of colour-coding and special transitions. Colour-coding is identical at

the syntactic level to the different primitive objects used in [11], plus it can be used

uniformly across types of object that are drawn in quite different ways.

Forall

Universally quantified objects are represented by drawing them in red. When playing an

animation (i.e. a sequence of diagrams, either in a redraw rule antecedent or a reasoning

program) they are additionally represented by a secondary animation showing a random

selection of other possibilities for the object when it is first drawn. This should help indicate

to the user (a) that this object stands for potentially a great many objects, and (b) which

aspects of the object are arbitrary.

Exists

Existentially quantified objects are represented by drawing them in blue. When playing the

animation for the antecedent to an animated redraw rule, they are additionally represented

by a secondary animation showing a man thinking before drawing the object (using the odd

construction line). This should help indicate to the user that there will probably be some

work involved in creating this object.

4.4.6 Implicit inferences

In §4.2.8, we discussed how certain reasoning steps are 'free rides', automatically carried out

in diagrams by the nature of the representation, without the need for explicit reasoning. This

is captured in our formalisation by a set of implicit inference rules, which should be

automatically applied by the system in any implementation of DDLA. These rules are

chosen according to the criterion that any implicit representation of the antecedent must

necessarily also represent the consequent:

X� Y, Y� Z  �   X� Z

X� X

X� Y, Y� X  �   X=Y

X=Y, Y=Z  �   X=Z

X=X

X=Y  �   Y=X

l i ne(A), l i ne(B), A=xy, B=xy �   A=B
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a>b, d=ac, e=bc  �   d>e  (for numbers in � +)

Visually obvious rules

The following rules are visually very intuitive, but not actually free-rides. It is possible –

using inaccuracy – to draw diagrams such that the antecedent is implicity represented, but

the consequent is not represented at all (e.g. Figure 4.22). This is because their consequents

contain explicit (though mostly graphical) relations. However any implicit representation of

the antecedent will strongly indicate the consequent. Therefore, these rules should be treated

like the implicit inference rules and also performed automatically:

X� Y  �   f(X)� f(Y)

f(X)� Y  �   X� f -1(Y)

X� f -1(Y)  �   f(X)� Y

x=y  �   f(x)=f(y)

x<y, y<z  �   x<z

Trivial rules

There are also reasoning rules which are neither free rides nor visually intuitive,50 but – once

learnt – are so simple that it soon feels unnatural to have to explicitly perform them. These

rules should also be performed automatically, unless there is a particular reason for pointing

out their application. However, this is a difficult category to define. Which rules should and

should not be included in this category depends upon the user. Also, whilst a couple of

applications of such rules may be trivial for most users, repeated automatic application

might lead to jumps in reasoning that are not obvious to the user. We have decided that the

following rules should be automated:

a+b=c  �   b+a=c

50 Some of the rules we list here are visually intuitive for some combinations of number
representation (c.f. the discussion of number representations in §4.4.5).
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(a+b)+c=d  �   a+(b+c)=d

a<b  �   a+c < b+c

t ype(x,y), subt ype(y,z)  �   t ype(x,z)

4.4.7 Emergent objects

When a set X is drawn, it might intersect with other already existing sets to create new

'emergent' sets such as X� Y, X� Yc, etc. We experimented with having such sets created

automatically as emergent objects. This involved three emergent object rules:

add- set - compl ement , add- set - uni on, and add- set - i nt er sect i on. However, these were

found to be more hindrance than help in three ways:

1) The greater number of objects slows down the diagram matching algorithm in our

implementation system � � �� � � � �� .

2) They result in more unknown relations being needed, which distracts attention from more

important relations. For example, consider a diagram containing sets A, B such that B� A.

Then we also create the set Bc
. This means that to represent x� A, we must state

'unknown(x� Bc)'. This is illustrated in Figure 4.23. This problem could be solved using

spiders.

3) When applying rules, the greater number of objects leads to more valid matches, which

the user has to select between. Most of these are not desirable.

We therefore do not use emergent objects in DDLA (even though this makes our

representation scheme less intuitive in places). Note that reasons (1) and (3) are related to

the use of diagrams in an interactive theorem prover (or rather, to any such system based on
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the user selecting and applying reasoning rules51), rather than to diagrammatic

representation.

4.4.8 Rules

The complete set of rules is given in appendix A. Here we give only a small sample of the

rules used in DDLA.

Function application

Figure 4.24 shows a rule allowing points to be created from functions. This rule is a sort of

drawing tool: it draws a new object, guaranteeing the existence of this object. For this rule,

the drawing should be done automatically by any implementation. Whenever the rule is

used, it is matched with a specific point and function52, and hence the image point can be

calculated53. Other drawing rules often involve user interaction to specify the desired

drawing.

The interpretation of this rule is: 

� (Figure 4.24) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X), 

r ange(f,Y), poi nt (x), x� X  �   �  'f(x)' . poi nt ('f(x)'), 'f(x)'� Y, 'f(x)'=f(x) ”

This is trivially true from the definition of a function.

51 It might be possible to build an interface where the user interacted by making drawing changes
directly to the diagram, and the system inferred which rules and matchings they were using. Such a
system would not suffer from this problem.

52 Recall that in unnamed 2-dimensional functions, such as f in Figure 4.24, are taken to be the
stretched identity function – c.f. §4.4.5).

53 This is true since all our functions are constructed by finite combinations of calculable base
functions. It would not be true in general for functions defined using existentially quantified
formulae.
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Subset

The rule in Figure 4.25 states: Given sets X, Y, if " y� Y, we can show y� X, then Y� X. This

is half of the axiomatisation for the � relation. The other half – y� Y, Y� X � y� X – is

handled as an implicit inference (see §4.4.6 above).

Set union
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The property of a set being the union of two other sets is defined by the branch rule in

Figure 4.26. The converse of this rule, “x� X � x� X� Y” follows from the implicit inference

rules, and so we do not need a second redraw rule.

4.5 Conclusion
This chapter has set out the core elements of the project. We have given an example of how

diagrammatic reasoning can be used to prove non-trivial theorems in analysis, and presented

a formal diagrammatic logic suitable for such work. We call this Dynamic Diagram Logic

(DDL). DDL is:

1) Wholly diagrammatic – rules and proofs are both presented graphically

2) ...but heterogeneous – diagrams mix visual and sentential elements

3) Dynamic – reasoning is linked to the drawing process rather than interpreting a finished

diagram.

DDL also introduces several new ideas. Its inference mechanisms work at a syntactic level,

but leverage semantic information from the representations. This is used to simplify finding

counter-examples, and to formally implement a version of Lakatos's method of strategic

withdrawal, whereby a conjecture can be weakened whilst trying to prove it. Its

representation scheme introduces animation as a way of representing quantifiers.

Using implicit relations, DDL allows facts to be inferred from the diagram, and implicit

inferences allow some proof steps to be skipped. This provides a way of formalising

reasoning from the diagram which allows for intuitive understanding.

The workings of DDL are not as simple as those of conventional logics. This should not be

surprising. DDL attempts to allow for intuitive reasoning as well as being formal, and

intuition is rarely simple. Also, part of the simplicity of conventional logics is due to our

long familiarity with them. The early formal logics of Frege, Russell et al were not so

simply presented.

This chapter also sets out a representation scheme for analysis concepts. We present designs

for objects and relations in the domain, with some discussion of their strengths and
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weaknesses. The design of these representations was guided by the aim of combining

intuition, representational range and reasoning power. However in places we have had to

compromise on this goal, for example over the question of existential import. The final logic

(DDLA) is hopefully suitable for representing the abstract and slippery concepts of analysis.
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5 Soundness

In chapter 4 we set out a method for diagrammatic reasoning (which we called DDL) and a

logic based on this for reasoning in the domain of mathematical analysis (DDLA). In this

chapter we evaluate the soundness of DDL and DDLA. 

The usual procedure for such an evaluation would be:

1) Prove that the inference mechanism is sound. By inference mechanism, we mean the

definitions in §4.3. covering rule application and the extraction of theorems from proofs.

2) Prove that the individual redraw rules are sound.

However, for a logic such as ours, this is not enough. The DDL inference mechanism is

defined at the level of ideal diagrams, which are abstract diagram-descriptions – but our

actual proofs and rules consist of physical diagrams. Hence we should also examine the link

between physical and ideal diagrams. This adds a preliminary stage:

0) Show that physical diagrams can reliably be converted into ideal diagrams (that is,

abstract diagram-descriptions). This involves examining the representation scheme set

out in §4.4.

There is also another step required for those aspects of DDLA that use the diagram-model

link (namely short-cuts in counter-example reasoning, c.f. §4.3.5). For these aspects to be

sound,  we must prove that the link between physical diagrams and models is reliable.

This chapter is organised into four sections. The first section consists of informal

discussions. It examines the underlying assumptions and looks at issues relevant to proving

soundness. By contrast, §5.2 consists almost entirely of definitions and results, with

virtually no discussion. The structure of this section largely mirrors that of §5.1, and §5.1

serves to motivate and explain the definitions and proofs of §5.2. §5.3 then gives a detailed

examination of the representation for the subset relation, which is probably the most

important of the implicit relations. The final section presents some examples of showing that

individual redraw rules are sound (with the complete rule-set examined in Appendix A).
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5.1 Background discussions

5.1.1 Assumptions in DDLA

In setting out DDLA we have made several assumptions, which we now examine. Firstly,

our work is in the domain of 'Euclidean-space analysis'. We assume that Euclidean-space

analysis is a consistent and standardised theory. This allows us to prove the soundness of the

individual rules of DDLA by reference to the standard theory. Our other assumptions relate

to the 'preliminary stage' identified in the chapter introduction, of showing that physical

diagrams can reliably be converted into abstract diagram-descriptions.

A reliable link between physical and abstract representations is necessary in any logic,

diagrammatic or algebraic. For example, in conventional logics we must assume that the

reasoner can reliably convert symbols on a page (the physical representation) into an array

of symbols in the logic,54 and in automated reasoning we assume that computers will behave

as intended. Typically this stage is overlooked, since with sentential logics it does not raise

any interesting questions. However for diagrammatic reasoning, the link between physical

and logical representations is considerably more complex, and hence this stage deserves

some examination.

Working in the context of an interactive theorem prover, we can rephrase this issue as

follows: the computer has an internal abstract representation for the diagram using idealised

graphic objects (i.e. domain objects), from which it produces the external physical

representation. The user only has access to the external representation, yet must be able to

find the correct interpretation. For this, we must assume:

1) That the computer can produce accurate physical diagrams

2) That the user can correctly identify graphic objects and their labels.

3) That the user can correctly assess observed relations.

If these assumptions hold, then the user's interpretation of the external representation will

match the internal representation. These assumptions are not universally true though. In

particular, assumptions 2 and 3 will fail for diagrams that are sufficiently cluttered. However

if we make the deeper-level assumption of clarity – i.e. that we restrict DDLA to using clear

diagrams – then they hold. This is not an unreasonable restriction.

54 At least, we need this assumption for mathematics to be communicated.
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Assumption 1

We can break this assumption down into more basic assumptions. An accurate physical

diagram would be one where the observable relations correspond with the internal

representation that the computer uses. To produce accurate diagrams, we require the

following assumptions to hold:

a) The surface on which diagrams are drawn obeys Euclidean plane geometry up to

detectable differences.

b) We can can divide this surface into a grid such that the computer can draw domain

objects on it up to the accuracy of the grid. Let � � � 2 be the set of squares that make up

this grid. i.e. � = { [n.e,(n+1).e]x[m.e,(m+1).e] : n,m� { -N...N} } , where e gives the

resolution of the grid and N� �  its size.

c) The computer can represent all explicit relations.

d) The computer can evaluate which relations will be implicit relations in the external

representation (that is, it can correctly apply the implicit relation rules).

Assumptions (a), (b) and (c) are uncontroversial. The true geometry of physical space is

unknown, but probably not Euclidean. However flat surfaces certainly appear to be

Euclidean – that is, they are identical to a Euclidean surface to the naked eye – which is all

we are assuming. Assumption (b) is just that we can produce bitmaps. Assumption (c)

commits us to being able to represent algebraic statements, draw arrows between objects

(for function and inverse relations) and draw dashed lines (open sets) and doubled lines

(closed sets). It is reasonable to assume we can do all of these things.

However assumption (d) is not straightforward, since we could conceivably write an implicit

relation rule that we cannot evaluate. To justify it, we must examine each of the implicit

relation rules:

Type

The assumption that object type is accurately represented is subsumed by assumption 2

(discussed below). For practical purposes, consider the type representations as illustrated in

Figure 4.18, §4.4.3. We require that these can be clearly distinguished. This is not

problematic provided the diagram is reasonably clear (i.e. all objects are drawn large enough
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for their type to be identified, and their representations are not overly obscured by other

aspects of the diagram).

Subtype

Subtype is a small set of relations defining the type tree set out in Figure 4.18, §4.4.3. We

take these relations to be axioms which should be learnt by users, and do not need to be

represented, hence their representation cannot be inaccurate.

Subset

We examine this in §5.3 below.

Radius

The line representing the radius forms part of our representation of an open-ball. Thus if the

ball representation can be correctly identified (assumption 2) then so can the radius.

Centre

If the radial line of a ball is correctly identified, then the centre point is obvious.

Equality

Implicit equality is deduced using the rule:

“ l abel (A)=l abel (B)” � r el at i ons(D) if A is drawn identically to B

By assumptions (a) and (b), we can calculate the bitmap representations � (A), � (B) and

evaluate this relation by comparing bitmaps. Potentially, bitmap comparison also allows us

to flag unclear situations (i.e. where the bitmap representations are almost identical) and

state the negation of the relation explicitly.

Arithmetic 

There are two relations that can be represented implicitly: x=y.z (where x is an area-block

and y, z are numbers drawn on perpendicular axes) and x=y+z (where x, y, z are

line-segments drawn on the same axis). By assumptions (a) and (b) we can calculate the

bitmap representations � (x), � (y), � (z). These bitmap representations will be particularly

simple (rectangles for area-blocks, small circles for points, lines for line-segments). We can

then evaluate these relations reliably.
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Assumption 2

Assumption 2 – that the user can correctly identify graphic objects and their labels – is not

universally true. Our ability to parse a diagram depends on the clarity of the different

objects. An unclear diagram can arise in several ways. Roughness of drawing (c.f. §3.1.3)

can lead to diagrams where the user might be unable to correctly distinguish different

objects (as shown in Figure 5.1). Ambiguity can also be caused by objects obscuring each

other, or object labels obscuring other diagram details. Also, there is the possibility that a set

of objects of one type might resemble objects of another type (e.g. a set of 4 lines might

resemble a Euclidean space). In practice, the object types used in DDLA all have radically

different representations if drawn large enough. It is therefore only in small cluttered

diagrams that this problem should ever arise.

Note that we only require this assumption for redraw rules – not for reasoning programs.

Graphic objects created in the course of a proof can always be correctly identified regardless

of the clarity of the final diagram, since the user was involved in drawing each object.

If this seems too strong, we could dispense with it by showing the drawing process

whenever we present a diagram. If the user sees the diagram being drawn object by object,

then the objects can reliably be identified (and matched with their labels) by examining the

change at each step. Object type can be spelt out if necessary using explicit relations. So

there is a reliable remedy to this potential problem. We do not insist on this remedy being

used though, as it would be inconvenient when presenting a diagram to have to draw it

object-by-object. A more practical variation on this (which we implement – c.f. §6.3.3) is to

make our diagrams interactive, allowing the user to investigate unclear diagrams

object-by-object. This protects against unclear diagrams as long as they are not actively

misleading.
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Assumption 3

Given assumptions 1 and 2, assumption 3 is less problematic because the implicit relation

rules take into account the imprecise nature of physical representations. Assumption 3 is

then equivalent to assuming that:

a) The user properly applies the implicit relation rules.

b) The user correctly interprets the explicit relation representations.

These postulates do require the user to learn the representational conventions used in DDLA

but this is to be expected in any reasoning system. More seriously, assumption (b) is false in

general. Whilst explicit algebraic statements are listed in a clear fashion, explicit graphical

statements (e.g. the representation for f(x)=y using arrows) can be obscured by lack of

clarity in the diagram. Hence, as in assumption 2, we require the diagram to be clear. As

with assumption 2, this requirement can be dropped by (a) showing the drawing process, or

(b) using an interactive representation .

5.1.2 Diagram semantics (c.f. §5.2.1)

We defined a diagram to be a collection of syntactic 'graphic objects' with relations. We

must now specify how the diagram semantics will work. The semantics for DDL diagrams

will involve two interlinked parts:

1) A mapping from physical diagrams (i.e. where lines have width and some inaccuracy) to

ideal diagrams (i.e. where lines are infinitely thin and anything can be accurately drawn).

2) A mapping from diagrams and redraw rules composed of idealised diagrams to algebra.

Our semantics will be slightly unusual in that we will fix on one underlying model: an

assumed standard model for real analysis. This is not essential: we could formulate

semantics in terms of 'any model'. However, fixing on one model reflects the idea running

through DDLA that we can relate graphic objects in diagrams to 'domain objects'. It only

makes sense to talk of such a link between diagram and domain objects in the context of a

fixed model. When we talk of models, we really mean fragments of this one fixed model.

From physical diagrams to ideal diagrams: The drawing function 

Consider two hypothetical reasoners, Alice and Bob, and suppose Alice has produced a

diagram, which Bob is attempting to parse. We need to know that Bob's reading of the

diagram (i.e. the objects and relations he identifies) matches what Alice intended to express.

This is complicated slightly by the effects of vagueness of representation (one of the
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implications of roughness of drawing identified in §3.1.3). Let D be the ideal diagram that

Alice wishes to express and � the physical diagram she draws. Dues to vagueness of

representation, Bob cannot, in general, deduce D from � , since the precise details of the

objects in D have been slightly blurred. For example, it might not be possible to distinguish

between a point drawn at x-y coordinates (1.5,1.5) and one drawn at (1.52,1.49). However,

this does not matter, as long as Bob's parsing of � is not significantly different from D. Let

D' be the ideal diagram that Bob thinks � expresses. The key thing is, that although D' might

not equal D, whatever relations Alice wishes to express about D must also hold for D'.

To state this formally, we define the drawing process as a function � (the drawing function)

that creates physical diagrams from ideal diagrams. We can then express the requirement

that the drawing process must not obscure important details as a condition on � :

"  ideal diagrams D,D' such that � (D)=� (D'), r el at i ons(D)=r el at i ons(D')

Bitmaps

Since we are using computers, our diagram objects will be drawn as bitmaps. A bitmap is a

physical grid of coloured squares (pixels). This has a physical resolution, which is the

smallest distance we can distinguish (the size of a pixel). In §5.3 we will assume that the

physical resolution is sufficiently big for users to distinguish individual pixels. The grid has

a finite size. However by using zooming/scrolling, we can allow this to be arbitrarily large.

We associate this physical grid with an abstract grid laid over � 2. This implies specifying an

orientation and an abstract resolution (the width of a pixel in � 2). The abstract resolution

can be changed during reasoning by zooming. 

From ideal diagrams to algebra: The interpretation function

When converting diagrams and diagrammatic rules into algebra, we wish to discard the

graphical information which (almost) specifies each object and keep only the relational

information. This work is largely performed by the implicit relation rules. That is, the

function r el at i ons(D) performs most of the task of diagram interpretation. However, the

r el at i ons function does not handle quantification, so we shall need to define an

interpretation function for this aspect.
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Note that except for the relation speci f i c, all relations in DDLA are valid statements in a

conventional axiomatisation of the domain. speci f i c is an instruction to view a graphic

object as representing only the object drawn. We will not give it a semantics directly.

Instead, its meaning comes from the implicit relation rule that uses it (c.f. §4.3.5).

Consistency, accuracy and soundness (c.f. §5.2.1.2, §5.2.1.5)

Some diagrammatic proofs, such as the proof of Pythagoras's theorem (Figure 1.1, §1), can

be formalised in terms of actions that preserve area. This idea is not applicable to DDLA,

where many of our actions consist of creating new objects, and we are not generally

interested in area. Instead, we use the more abstract idea from sentential logic of actions that

preserve consistency (formalised by defining the concept of a consistent diagram, which is a

diagram representing a situation that is possible).

Given the concept of a consistent diagram, we can then define what a sound redraw rule is:

A sound rule is one that preserves consistency. 

We also need a concept to cover when the diagram-model link is trustworthy. We introduce

the term accurate, to describe a representation that is itself an example of the situation it

describes. That is, an accurate diagram is a model for the relations it expresses.

Note that consistency does not imply accuracy. DDLA allows consistent diagrams to be

inaccurate. This could hinder the intuitive understanding that diagrams give. Consistent but

inaccurate diagrams should be avoidable, since if a diagram is consistent, then it has a model

- and drawing that model would give an accurate diagram. So we should only use inaccurate

diagrams when representing inconsistent situations. There are several reasons, however,

why we do not make it a requirement that consistent diagrams must also be accurate:

1) The question of whether or not a diagram is consistent is undecidable,55 so we would not

know when to enforce such a requirement.

2) The question of whether or not a diagram is accurate does not have a decision

procedure,56 hence we do not know how to enforce such a requirement.

55 This is roughly equivalent to the decidability of first order predicate logic with quantifiers.
56 This is because there are not decision procedures for testing relations such as open(X). This

problem might be undecidable.
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3) We might know that an accurate diagram exists for the situation we wish to represent, but

be unable to find it. We can nevertheless perform valid reasoning about such a situation

using inaccurate diagrams.

Evaluating accuracy

Accuracy is used in conjunction with the speci f i c relation to allow some reasoning

short-cuts. Fortunately, when evaluating accuracy, we do not need to worry about false

negatives, since a false negative could only block a valid short-cut, rather than lead to a

mistake (c.f. §4.3.5 where we define specific objects, or §5.2.2 where we examine the usage

of accuracy with specific objects). Therefore we can take a precautionary approach to

evaluating diagram accuracy, assuming objects to be inaccurate unless we are certain

otherwise. The procedure we will use (set out in Definition 5.2.1.5) is quite crude, and we

hope that it can be extended (c.f. §8.2.3). It fails to recognise accuracy in a large number of

accurate diagrams, which limits where we can currently use diagrammatic shortcuts in

counter-example proofs.

Implicit inference rules and emergent object rules

Except for the specific-object rule (c.f. §4.3.5), implicit inference rules and emergent object

rules can be replaced with equivalent simple redraw rules. The difference is only that they

are applied automatically. Therefore, for the purposes of showing soundness, we can treat

them as simple redraw rules (this reduces the number of proofs we have to give for

soundness-of-inference). The specific-object inference rule is different because it uses

meta-predicates to draw on the semantic properties of the diagram. We treat it separately in

§5.2.2.

5.1.3 From soundness in DDLA to soundness in standard

analysis

Although unlikely, a rule could potentially be sound in DDLA whilst its interpretation is

false in standard analysis. This is because DDLA can only reason about a subset of the

objects in the domain (the drawable objects). Hence a rule could be sound for all drawable

cases, but not for all cases. For example, suppose we could state “All functions are

piecewise continuous” as a DDLA rule. This rule would be sound for DDLA (which does

not define any infinitely discontinuous functions), but its' algebraic interpretation would be
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unsound. So soundness in DDLA is a strictly weaker condition than soundness in standard

analysis. To make the full range of domain objects drawable, we would require:

1) Representations for objects in � n for any n.

2) Infinite closure of the rules that generate complex objects from basic objects, as opposed

to finite closure.

Neither of these is realistic without using iconic (and largely algebraic) representations a lot

more heavily (something that is worth investigating, but would require considerable design

and development work). However we can consider the hypothetical reasoning system where

they hold, and all objects in the domain are drawable. We call this logic 'Extended DDLA' or

EDDLA. 

As we show in Theorem 17, soundness in EDDLA is equivalent to soundness in standard

analysis. Also, since EDDLA includes DDLA, soundness in EDDLA is a stronger criterion

(i.e. soundness in EDDLA implies soundness in DDLA). We therefore work in EDDLA

when showing that individual redraw rules are sound. Note that the inclusion of extra

domain objects within the representation scheme does not affect the soundness or otherwise

of the inference mechanisms. This is because the inference mechanisms are defined at the

more abstract level of DDL, without reference to the objects covered. Hence the results

given in §5.2.2 regarding the inference mechanism apply equally to DDLA, EDDLA and

any other logic built using the DDL inference framework.

5.2 Formal definitions and results
This section uses the notational conventions in §4.3.1 and the definitions from §4.3.

5.2.1 Diagram semantics (c.f. §5.1.2)

Let � be the conventional axiomatisation of Euclidean-space analysis, and � a model for �

that contains � 2. We assume that such an � exists. Up till now, we have talked of diagrams

consisting of domain objects and relations. We can now specify that domain objects are

objects in � . Given an ideal diagram D, a substitution for D is a function

s:obj ect s(D)® obj ect s(� ).
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Our diagrams are produced by colouring squares in a grid. Let � be the set of squares that

we draw on. � = { [n.e,(n+1).e]x[m.e,(m+1).e] | n,m� { -N...N} } , where e gives the resolution

of the grid and N its size. We associate � with a physical grid of squares. Note that this

implies specifying an orientation and a drawing scale (i.e. a conversion between real

numbers and physical distances).

The drawing function ����  (c.f. §5.1.2)

We assume that all physical diagrams are created from ideal diagrams as using a drawing

function � , that maps drawable domain objects onto physical graphic objects (given a

drawing surface � ). Given a drawable domain object x, §4.4 specifies how to represent x as

a set y in � 2. We then need to convert y from � 2 to the drawing surface. The drawing

function we use is a bitmap projection of the object representations specified in §4.4,

whereby we colour an entire grid square if any part of it is coloured by the ideal

representation of the object.

Definition 5.2.1.1: The drawing function ����

Define � :{ drawable objects}  ®  �  by � (x) = � (y) = { B� �  : B� y� � } , where y is

the set in � 2 representing x as specified in §4.4 (e.g. for points, y={ x} , for sets,

y=bor der (x)).

For convenience, we overload this function as follows: Let Z = � B� � (x) B. Then

we define � :{ drawable objects}  ®  � 2 by � (x) = Z.

Now given an ideal diagram D, we define 

� (D) = ({ � (x) : x� obj ect s(D)} ,{ r : r� r el at i ons(D)} ).

Note that this definition draws on Assumption 1.d (that the user can determine

which relations are implicit) and Assumption 1.c (that the computer can create

representations for all necessary explicit relations) from §5.1.1.

We can also define the inverse drawing function � -1. Since �  is many-to-one, � -1  will map

physical diagrams to sets of ideal diagrams.
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The interpretation function ����  (c.f. §5.1.2)

Definition 5.2.1.2: The interpretation function ����

Given an ideal diagram D, the interpretation function �  converts D into algebra

as follows: � (D) = { r(x,y)� r el at i ons(D) | r� speci f i c}

Given physical diagram � , let � (� )=� (D), where D is any ideal diagram in � -1(� ).

This is well-defined given Assumption 3 (c.f. §5.1.1), which implies that "  ideal

diagrams D, D' such that D, D' are represented by � , we have 

r el at i ons(D)=r el at i ons(D').

Given a diagram D in reasoning program D, define � (D|D) = Q(D|D).� (D), using

the quantification interpreter function Q(D|D) as defined in Definition 4.3.2.3.

Given a branch redraw rule R:D0 �  D1...Dn such that Q(R) = “ � ” ,

let � (R) = � (D0) �   �  � i l abel s(Di)\l abel s(D0) . � (D1)� ���� � (Dn)

Given a branch redraw rule R:D0 �  D1...Dn such that Q(R) = “" ” ,

let � (R) = � (D0) �  "  � i l abel s(Di)\l abel s(D0) . � (D1)� ���� � (Dn)   

Note that if diagram A matches diagram B, then � (A) will unify with � (B). 

Note that universally quantified rules are interpreted as tautologies. They are useful only in

conjunction with animated rules.

Consistent and Accurate Diagrams  (c.f. §5.1.2)

Definition 5.2.1.3: Consistency

Given a diagram D in reasoning program D, and substitution s, we say D is

consistent under s if:

� � �� s(� (D|D))

We say D is consistent if there exists such a s (i.e. there are objects in �  for

which the situation represented by D is true).

Given a reasoning program D, we say D is consistent if �  diagram 
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D� l eaves(D) such that D is a consistent diagram.

Definition 5.2.1.4: Accurate diagrams

Given an ideal diagram D in reasoning program D, let 

� I:obj ect s(D)® obj ect s(� ) be the substitution that maps objects in D onto

themselves. 

Then we say D is accurate if � � �� s I(� (D))

(i.e. the situation represented by D is true for D itself, hence D can act as a

model).

We call a physical diagram �  accurate if �  D� � -1(� ) such that D is accurate.  

Evaluating accur at e(D)

In this project we use the following definition for evaluating accuracy.

Definition 5.2.1.5: Evaluating accur at e(D)

If "  r� r el at i ons(D), r is implicit in D and r is one of { t ype, subt ype, � , � �

cent r e, r adi us}  then accur at e(D) is true.

As discussed in §5.1.2, this evaluation scheme ignores a great number of accurate diagrams.

Implicit equational relations and relations of a 'functional nature' (e.g. a=b or y=f(x)) are not

suitable for inclusion in accurate diagrams, due to the possibility of exploiting the tiny (but

potentially important) differences between objects which are indistinguishable when drawn

(due to vagueness of representation – c.f. §3.1.3). We now show that (without the closed

world assumption) it is sound:

Theorem 1: Definition 5.2.1.5 gives no false positives

Proof

Given a physical diagram � , we need to show that if accur at e(� ) evaluates to

true using Definition 5.2.1.5, then �  domain objects X1...Xm such that 

� ({ X1...Xm} )=obj ect s(� ), and { X1...Xm} � r el at i ons(� ).

Note that � -1(� )� �  and let D be the ideal diagram from which it was created

(recall that this must exist, but cannot be uniquely identified – c.f. §5.1.2). It is

sufficient to show that obj ect s(D)� r el at i ons(� ). This requires an examination

of the relations allowed by Definition 5.2.1.5 and the implicit inference rules that

generate them. 

133



t ype: These relations are copied straight from D to � . It is an assumption of

DDLA  that the user can reliably extract them, which implies that 

t ype(D)=t ype(D') " D'� � -1(� )

subt ype: These relations are true for all diagrams.

subset : c.f. Theorem 24 where we show that for diagrams without functions,

i mpl i ci t (A� B) � A'� B' " A',B'� � -1(� )

r adi us and cent r e: Suppose Br(x) is a ball in � . Let B'r'(x') be the ideal ball from

which it was drawn. Then the radius and centre relations are true for objects

B',r',x'.

These are all the relations allowed in �  by Definition 5.2.1.5. Thus if we evaluate

accur at e(� ) to true, then r el at i ons(� ) will be true for obj ect s(D) as required.

Sound rules

A redraw rule is sound if it preserves the consistency of any reasoning program that it is

applied to:

Definition 5.2.1.6: Soundness for branch rules

A branch rule R is sound if "  diagrams D0 ... Dn such that D0 �  D1...Dn is a valid

application of R, and "  substitutions �  such that D0 is consistent under � , then 

�  i� { 1..n}  such that Di is consistent under substitution � . Keeping the same   �   makes the logic monotonic  

Definition 5.2.1.7: Soundness for animated rules

An animated rule R is sound if "  reasoning programs D, D' such that D was

drawn using sound redraw rules D and D � D' is a valid application of R, then

r oot (D) consistent under substitution �  �  D' is consistent under substitution � .

5.2.2 Soundness of the inference mechanism

We now present results to show that DDL is a sound logic. That is, that the inference

mechanisms defined in §4.3 are sound according to the definitions given in §5.2.1 (that is,

that they preserve consistency)� We break this up into the following sections:

1) The 'basic' inference mechanism, comprising simple, branch and animated redraw rules

with a generalisation procedure that creates new redraw rules from reasoning programs.

2) Adding adaptive matching and condition updating to the basic inference mechanism.

3) Using the meta rules on finished proof programs.
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4) Counter-example proofs.

We then show that sound redraw rules convert into sound algebraic theorems, providing

soundness.

The basic inference mechanism

The results in this section culminate in the theorem:

Given D, a reasoning program drawn using redraw rules D, let N be the new

redraw rule N:r oot (D) �  l eaves(D). If �  are sound rules, then N is a sound

rule.

This means that redraw rules can be chained together to give a program for redrawing

diagrams which: 

1) Can be applied to any diagram that matches r oot (D). That is, if r oot (D) matches

diagram A, then the sequence of redrawings used on r oot (D) can also be used on A.

2) Can be summed up by the example transformation r oot (D) �  l eaves(D).

3) Preserves consistency when applied to other diagrams.

Our proof will use induction over reasoning program structure. Lemma 4/Corollary 4.1 give

the base case for (1) above: that a reasoning program consisting of just one rule R applied to

a diagram D, can also be applied to any diagram D matches. Lemma 6 then covers the step

case: that a reasoning program D can be applied to any diagram A that matches root(D).

Finally, to demonstrate that a redraw rule N created from a reasoning program is sound, we

examine its application to an arbitrary diagram A, and show that such applications preserve

consistency.

The following results use Definition 4.3.2.4 (normal 'unadaptive' matching) as the basis for

diagram matching. Adaptive matching will be dealt with in lemmas 8-10. For matching

between reasoning programs, we treat non-vacuous and vacuous matching (Definitions

4.3.3.3 and 4.3.3.4 respectively) as separate cases.

Lemma 2: Diagram matching is a transitive relation.

Proof:

Trivial.
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Lemma 3 (Simple rule application is transitive): Given simple rules

R:T1���� T2, N:D1���� D2 such that D1
R� D2, and diagrams A1, A2 such that

A1
N� A2, then A1

R� A2

Proof:

There are 3 conditions to check in Definition 4.3.2.4. They all follow easily

because they are themselves transitive:

a) Matching: Ti � ni.mi�  Ai by Lemma 2.

m1=m2 where defined, n1=n2 where defined  �   n1.m1=n2.m2 where defined.

b) Object bijectivity: m2(obj ect s(T2\T1))=obj ect s(D2\D1), n2(obj ect s(D2\D1))

=obj ect s(A2\A1) so n2.m2(obj ect s(T2\T1))=obj ect s(A2\A1).

Similarly n1.m1(obj ect s(T1\T2))=obj ect s(A1\A2).

c) Relation bijectivity: r(t,t')� r el at i ons(T2\T1) �  r(m2(t),m2(t'))� r el at i ons

(D2\D1) �  r(n2.m2(t)),n2.m2(t'))� r el at i ons(A2\A1)

Similarly, r(t,t')� r el at i ons(T1\T2) �  r(n1.m1(t)),n1.m1(t'))� r el at i ons(A1\A2)

Lemma 4: Given simple redraw rules R:T1���� T2, N:D1���� D2 with D1
R� D2.

Let Ti���� m i� Di, and suppose A1, A2 are diagrams such that D1���� n1� A1,

then if A1
R� A2 with mapping T1���� n1.m1���� A1, we also have A1

N� A2

Proof:

We define a matching D2� n2� A2 from the existing matchings by:

     n2(x)  = {  n1(x) if x� l abel s(D1)

{  m.m2
-1(x) if x� l abel s(D2\D1) 

Figure 5.2 illustrates how the various mappings fit together.

We need to show that n2 is a valid matching according to Definition 4.3.2.4. 
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Clearly it is a well-defined function from D2 to A2.

We also require: "  r(x,y)� r el at i ons(D2), r(n2(x),n2(y))� r el at i ons(A2)

Suppose r(x,y)� r el at i ons(D1)

Then r(x,y) is unaffected by the application of R.

�  r(n2(x),n2(y))=r(n1(x),n1(y))� r el at i ons(A1)

r(x,y) is unaffected by the application of R under matching m1 

�  r(n1(x),n1(y)) is unaffected by the application of R under matching

n1.m1

\ r(n1(x),n1(y))� r el at i ons(A2)

Otherwise r(x,y)� r el at i ons(D2\D1)

�  r(m2
-1(x),m2

-1(y))� r el at i ons(T2\T1)

since changes(D2�D1)=changes(T2,T1)

�  r(m.m2
-1(x),m.m2

-1(y))� r el at i ons(A2\A1)

since changes(A2,A1)=changes(T2,T1)

hence r(n2(x),n2(y))� r el at i ons(A2)

Now n2=n1 where defined by definition. Also changes(A2,A1)=changes(T2,T1)

and changes(D2�D1)=changes(T2,T1) so changes(A2,A1)=changes(D2,D1).

This fulfils all the conditions for redrawing, so A1� A2 is a valid application of

rule N.

Corollary 4.1: Given branch redraw rules R:T0���� T1...Tk, N:D0���� D1...Dk

such that D0
R� D1...Dk with matching m, and suppose A0...Ak are

diagrams such that D0���� n0� A0 and A0
R� A1...Ak with matching

T0���� n0.m0���� A0, then we also have A0 
N� A1...Ak

Follows by applying Lemma 4 to each branch.

Lemma 5 (Transitivity of program matching): Given reasoning

programs A, B, C such that A���� m� B, B���� n� C using Definition

4.3.3.3, if B, C are constructed programs then A���� n.m� C

Proof:

Given Lemma 2 and Lemma 3, Definition 4.3.3.3 is transitive provided that when

A-A' is a strict link in A, we have m(A)-m(A') a strict link in B. This is trivially

true, since all links in constructed programs are taken to be strict.
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Lemma 6: Suppose diagram D0 is redrawn to give program D using

redraw rules D,D,D,D, and A0 is any diagram such that D0���� A0. Then A0 can

be redrawn using DDDD to give reasoning program A such that D���� A

with Definition 4.3.3.3.

Proof by induction on |r ul es(D)|

If |r ul es(D)|=1 then true by Corollary 4.1.

Suppose |r ul es(D)|=K>1

Let r � r ul es(D) be the final rule used to draw D, let D-1 be the reasoning

program before R was applied, and let D-1 = t ar get (R,D-1) be the diagram R was

applied to.

By the inductive hypothesis, A0 can be redrawn to give A-1 such that D-1� n� A-1

with Definition 4.3.3.3. Let A-1 be the diagram n(D-1) .

Case 1: R is a simple/branch rule, R:T0� T1...Tn

By Lemma 2, T0 matches A-1, so we can apply R to A-1 to create A,

and using Corollary 4.1, we have D� A

Case 2: R is an animated rule, R:T1-...-Tn �  T'

Case 2a: T1-...Tn � m� D-1 using Definition 4.3.3.3 (normal matching)

By Lemma 5, T1-...-Tn� n.m� A-1, so we can apply R to A-1 

to create A, and using Corollary 4.1, we have D� A

Case 2b: T1-...Tn � m� D-1 using Definition 4.3.3.4 (vacuous

quantification matching)

Let T1-...-Tj be the fragment of T that matches D-1, and 

x� obj ect s(Tj\Tj-1) such that not (� m(x)) �

r el at i ons(D-1).

Then by Lemma 5, T1-...-Tj matches A-1 with Definition

4.3.3.3. 

Also, since D-1� A-1, we have not (� n.m(x)) �

r el at i ons(A-1). Therefore T� n.m� A-1 with Definition

4.3.3.4. Hence we can apply R to A-1 create A, and using 

Corollary 4.1, we have D� A

�
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Theorem 7: Suppose D0 is redrawn to give D using redraw rules D.D.D.D.

Let N be the rule N:D0� leaves(D). If DDDD are sound rules, then N is a

sound rule.

Proof:

Let A0...Ak be diagrams such that A0 N�  A1...Ak using matching n. If A0 is

inconsistent then we have nothing to prove, so suppose A0 is consistent with

substitution � .

D0� A0, so by Lemma 6, we can redraw A0 using D to give reasoning program A'

such that D� n'� A'. Moreover, we can choose labels for the new objects in A'

such that n'=n

Now D sound �  A' is consistent with substitution � , since sound rules preserve

consistency by definition. Therefore, �  consistent diagram A'� l eaves(A')

Let A� { A1...Ak}  be the diagram such that n'.n-1(A)=A'. 

Now changes(A0,A)=changes(A0,A'), so r el at i ons(A)=r el at i ons(A'). Hence A'

consistent with substitution �  �  A is consistent with substitution � . So N

preserves consistency as required.

Using adaptive matching

The following results allow us to work with adaptive matching (c.f. §4.3.3.5). Note that they

do not require any conditions on our ability to evaluate relations. We show that if a

conjecture is modified/proved using adaptive matching, then the modified conjecture can be

proved with normal matching.

Lemma 8 (Adaptive matching ����  normal matching after update):

Given diagram A and reasoning program B such that A���� m ���� B,

B���� l eaves(B) using Definition 4.3.3.6 (adaptive matching).

Let B' = updat ea(B) and B'=updat ea(B). Then we have A���� m ���� B' using

Definition 4.3.2.4 (normal matching).

This is clear from Definition 4.3.3.6, Definition 4.3.2.4 and Definition 4.3.3.7.
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Lemma 9: Suppose diagram D is redrawn to give reasoning program

D using redraw rules D D D D with adaptive matching. Let D'=root(D). Then

D' can be redrawn to give D using DDDD with normal matching.

This is obvious for simple/branch rules from Lemma 8 and Lemma 6. The only

subtlety concerns animated rules. Suppose R is an animated rule used in drawing

D, then either R was applied before D' was created (and is therefore not needed to

draw D from D'), or Definition 4.3.3.7 guarantees that R can be applied as before.

Theorem 10: Adaptive matching with condition updating is sound:

Suppose diagram D is redrawn using rules DDDD to give reasoning

program D with root diagram D'. If DDDD are sound, then 

N:D' �  leaves(D) is a sound rule.

This follows from Lemma 9 and Theorem 7.

Soundness of the meta rules

This follows quite simply from the results in the previous section, with the addition of the

following lemmas regarding deleting relations and the elimination of 'dead' branches (those

that end only in diagrams containing false):

Lemma 11: Deleting objects/relations is always sound

Let R be a deletion rule (c.f. §4.2.8) and D, D' be diagrams such that D R�  D'. 

Then � (D') �  � (D), so � (D) consistent with substitution �  �  � (D') consistent

with substitution � .

Lemma 12: Suppose N:D0���� D1...Dn is a sound rule and

f al se���� r el at i ons(Dn). Then N':D0���� D1...Dn-1 is sound.

Proof:

Suppose D0� n� A0, A0 N�  A1...An and A0 is consistent with substitution � . N

sound �  �  i such that Ai is consistent with substitution � .

f al se� r el at i ons(Dn) �  f al se� r el at i ons(An) hence An is not consistent.

Therefore i<n and N' is sound.
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Lemma 13 (mer ge is sound): Given a consistent reasoning program

D, if D' is created by applying merge to D, then D' is consistent

Applying merge is equivalent to discarding dead branches (sound by Lemma 12),

deleting those objects and relations not found in all other branches (sound by

Lemma 11).

Technically, Lemma 13 only justifies using mer ge at the end of a proof, which is all we

need. It does not justify using mer ge in the course of a proof, as this would invalidate the

proof of Theorem 7 which was not proved for meta-rules. This restriction does not affect the

range of the logic, but only the neatness of some proofs – and only more complicated proofs

than we have produced. It is likely that Theorem 7 does extend to cover mer ge, which could

then be used during proofs.

Lemma 14: ext r act  is sound

This follows from Theorem 7 and Lemma 12.

Soundness of counter-example reasoning

A counter-example proof consists of a reasoning program D constructed from a blank

diagram D0 using rules D� { R} such that " D� l eaves(D)� f al se� r el at i ons(D), from

which we conclude that if D is sound then R is false. Counter-example reasoning can also

use a special implicit inference rule (c.f. §4.3.5), which we now examine in Lemma 15. 

Lemma 15: The rule R=“ i mpl i ci t (r(x,y)) and speci f i c(x) and speci f i c

(y) and accur at e(���� ) ����  r(x,y)”  preserves consistency

Suppose we have physical diagram �  with r(x,y)� r el at i ons(� ) such that R can

be applied to �  to give diagram � '={ obj ect s(� ), r el at i ons(� )� { r(x,y)} } . We

require that �  consistent �  � ' consistent.

Let X, Y be the objects in �  such that l abel (X)=x, l abel (Y)=y

� �accurate �  �  D� � -1(� ) such that �  �  sD(� (D|D)) (where sD identifies objects

in D with the identical objects in � )

Let x', y' be the domain objects in �  corresponding to x, y. Then � (x')=X.

Similarly � (y')=Y.

i mpl i ci t (r(x,y)) �  r(x,y) is true for all x, y such that � (x)=X, � (y)=Y
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�  r(x,y) is true for x', y'

�  �  is also a model for sD(� (D'|D)). So D' is consistent, and therefore � ' is also

consistent.

Theorem 16: Counter-example proofs are sound

D0 is blank and therefore trivially consistent. Sound rules preserve consistency by

definition, hence  if D� { R}  is sound then �  diagram d i � l eaves(D) such that Di

is consistent. But this is impossible, since f al se� r el at i ons(Di). Hence D sound

�  R unsound as required.

Soundness of conversion  

Theorem 17 (Conversion Theorem): R:D� D'1...D'k sound in Extended

DDLA � �� �� �� � ���� (R) sound in ����  

Proof:

Suppose R:D � D'1...D'k is sound in Extended DDLA and consider 

� (R) = “ � (D) �  Q(R).� (D'1)� ...� � (D'k)”

This is sound if "  substitutions �  such that � (� (D)) is true, �  i such that 

� (Q(R).� (D'i)) is also true.

Suppose �  is such a substitution. Let X1...Xm be the objects in � (� (D)). Let A be

the diagram ({ Xi} ,r el at i ons(D)) (which is a diagram in EDDLA, though not

necessarily in DDLA).

Note that � (� (D)) true �   A is consistent with substitution � . Also D� n� A using

�  to define a matching.

Hence we can apply R to A to create diagrams A'1...A'k and � (A'i) Û  � (� (D'i))

R sound �  � A'i consistent with substitution �  �  � (� (D'i)) is true as required.

Conversely, suppose � (R) is sound. 

Let B,B'1...B'k be diagrams such that B R� B'1...B'k with matching n, and B is

consistent with substitution � .

�  � (� (B)) is true

D� n� B �  n(� (D)) Û  � (B), therefore � (n(� (D))) is true

� (R) sound �  � (n(� (D'1)� ���� � (D'k))) is true
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�  � (� (B'1))� ...� � (� (B'k)) is true

�  � i such that � (� (B'i)) is true

�   Bi is consistent with substitution �  as required.

5.2.3 Summary

This section has set out a semantics for DDLA, grounded in a standard model for

Euclidean-space analysis. Working at the level of abstract diagram descriptions, we have

shown that the inference mechanisms of DDLA are sound. This involved examining:

1) The basic inference mechanism of redraw rules

2) The use of meta rules

3) The use of short-cuts in counter-example reasoning (based on a procedure for evaluating

the accuracy of a diagram). Note that part of this proof requires an in-depth examination

of physical representations of the subset relation, which has been deferred to §5.3.

We have also shown that redraw rules can be converted into equivalent algebraic rules, and

that if these conversions are sound then original redraw rule is sound. The converse is also

true within a larger system we call Extended DDLA. This means that a diagrammatic proof

of a diagrammatic theorem produced using redraw rules whose conversions are sound,

constitutes a sound proof of the equivalent algebraic theorem.

5.3 The subset relation
Although there are many graphical aspects to DDLA, the subset relation is the main place

where DDLA draws on the geometric properties of diagrams. It does so in three ways: 

1) To implicitly represent statements of the form A� B

2) To automatically infer A� C from A� B, B� C

3) When presenting counter-examples, a diagram with implicit subset relations guarantees

the existence of a model with the same relations. 

The use of implicit subsets – particularly its use in counter-example reasoning – is not as

straightforward as it might seem. This section formalises how we define A inside B, and

proves that this gives the desired properties – namely that “A inside B” can be reliably

determined for our diagrams, and that being able to draw a diagram guarantees the existence

of matching models. 
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Note: Some of the terminology used in this section overlaps with concepts in DDLA (e.g.

closure). However this section is outside DDLA, and these terms do not refer to the DDLA

definitions or usage.

5.3.1 Representing A ���� B

Recall from §5.1.1 that in order to use the diagram to represent subset relations, we need to

be able to evaluate the implicit relation rule relating to subset. From §4.4.5, given an ideal

diagram D, we have:

“ l abel (A)� l abel (B)” � r el at i ons(D) if A is clearly drawn inside B

In the light of §5.1.2 and assumptions (a) and (b), we can now give a more precise statement

of this rule and show that it can be evaluated.

Notation

Power sets: If X is a set, write P(X) for the power set of X

Flattening function: Given A� P(X), define U(A) = � a� A a. U is a function P(P(X)) ®  P(X). 

Paths: If x,y are points in � 2� { ¥ } , let p:x® y denote that p is a path from x to y (i.e. p is a

function, p:[0,1]® � 2, p(0)=x, p(1)=y). A simple path is one that does not intersect itself,

except possibly at its endpoints. Given a simple path p passing through points x,y, let p:x® y

denote the section of path starting at x and ending at y.

Definitions

Our first three definitions are standard analysis concepts: closure under sequence limits, set

border and set interior.

Definition 5.3.1.1: Set closure

Given an ideal set A, let cl osur e(A) = { x� �   | �  sequence an� A . an® x}  )

Definition 5.3.1.2: Set border

Given an ideal set A� � 2, let bor der (A) be the set of points making up its

border: bor der (A)={ a | a� cl osur e(A) and " e>0, Be(a)� cl osur e(A)} ). 

For physical sets � (A), let bor der (� (A)) = � (bor der (A)). Note that this differs

from the definition for ideal sets, in that instead of a curve, it gives a 'blocky'
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border composed of grid squares. For this to be well-defined we require:

" A'� � -1(� (A)), � (bor der (A')) = � (bor der (A)). This is trivial, since if � (A') has

a different border from � (A) then A' cannot be in � -1(A).

Definition 5.3.1.3: Set interior

Given a set A, let i nt er i or (A) be the set of interior points: 

i nt er i or (A)={ a� A | a� bor der (A)}  for ideal sets.

i nt er i or (A)={ a� U(A) | a� bor der (A)}  for physical sets.

Lemma 18: bor der (���� (A)), i nt er i or (���� (A)) can be calculated for all

drawable sets A

Proof is by induction on the structure of A.

Let D be the diagram containing A.

Base case: Suppose A is a basic set

Then A is bounded so we can choose �  large enough that � (A) is

contained inside �  and does not touch the borders of �  (and

moreover since a finite collection of bounded objects is bounded, we

can choose �  large enough such that all basic sets in D are drawn

within � ).

A is represented by a simple closed curve a 

(i.e. bor der (� (A))=� (A)= � (a)). By Assumption 1 (c.f. §5.1.1), � (A)

is a set of squares in �  that the computer can calculate. 

We can calculate i nt er i or (� (A)) from � (A) by sorting � \� (A) into

disjoint connected sets of squares. This method is inefficient but

decidable, since �  is a finite set. Let E be the union of those sets

which connect with the border of the diagram. E is the exterior of 

� (A) and i nt er i or (� (A)) = � \(E� bor der (� (A))). 

Step case 1: Suppose A=f(B) or A=f -1(B)

Then A is drawn as a basic blob set, and hence bor der (� (A)) and

i nt er i or (� (A)) can be calculated as in the base case.

Step case 2: Suppose A=A1� A2
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Given the bitmap representations for A1, A2, the bitmap representation

for A can be calculated by the following formula:

bor der (A)=(bor der (A1)� i nt er i or (A2))

� (bor der (A2)� i nt er i or (A1))

� (bor der (A1)� bor der (A2)) 

and i nt er i or (A) = i nt er i or (A1)� i nt er i or (A2)

Since the bor der (Ai), i nt er i or (Ai) are finite sets of squares, these

formulae can be evaluated.

Step case 3: Suppose A=A1� A2

bor der (A)=(bor der (A1)\i nt er i or (A2))� (bor der (A2)\i nt er i or (A1))

i nt er i or (A) = i nt er i or (A1)� i nt er i or (A2)

Step case 4: Suppose A is a complement set, A=Bc

Then bor der (A)=bor der (B)

i nt er i or (A) = � \(bor der (A)� i nt er i or (B))

We formalise 'clearly inside' as being inside with a clear border of empty space. We do so

here in a bitmap-specific manner. See [58] for a formalisation that uses error margins

instead.

Definition 5.3.1.4: Touching squares

Let a,b be two squares in � . Say a,b are touching squares if a� b� �  (i.e. a

touches itself and the 8 surrounding squares).

Given a square a and a set of squares B, say a touches B if � b� B such that a,b

are touching squares.

Now given an ideal diagram D, we have:

Definition 5.3.1.5: 'Clear interior'

Given set A in ideal diagram D then the clear interior of A is recursively defined

as follows:

If A is a basic set, then the clear interior of A is:

i nt er i or (� (A)) \ { b� �  | b touches bor der (� (A))}

If A=A1� A2, then the clear interior of A is: 

(the clear interior of A1) �  (the clear interior of A2)

If A=A1� A2, then the clear interior of A is: 
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(the clear interior of A1) �  (the clear interior of A2)

If A=Bc, then the clear interior of A is:

(bor der (� (B))� i nt er i or (� (B)))c \ { b� � �| b touches bor der (�

(A))}

Definition 5.3.1.6: 'Clearly inside'

Given sets A, B in ideal diagram D, then A is clearly inside B iff � (A) is inside

the clear interior of B.

Since interior and border can be calculated for all drawable sets, and consist of a finite set of

squares in � , the relation “A clearly inside B” can be evaluated from the bitmap

representation. This satisfies the requirement in §5.1.1 that the computer can evaluate

implicit relations rules.

Evaluating such rules using the bitmap also means that the computer is working from the

same representation as the user. This helps justify assumption 3 in §5.1.1. If the user's

judgement is not fine-grained enough to detect differences at the pixel level (e.g. if pixels

are too small, A might be drawn inside B, but the user would not be able to perceive this),

this evaluation can be adjusted to take that into account by demanding that A, B and

mi n({ |a-b| | a� � (A), b� i nt er i or (� (B))} ) be of a minimum size. As specified in §4.3.2.1,

cases where the relation is unclear can then be clarified with explicit statements. In practice,

at the resolution we have been working at this has not been an issue.

5.3.2 Transitivity

Transitivity (i.e. that “A� B, B� C � A� C”) is handled as an implicit inference rule (c.f.

§4.4.6). For DDLA to be sound, we only require this rule to be sound. However, for this rule

to make sense as a free ride, it should connect with some intuitive aspect of the visual

representation. Here, transitivity makes sense because the inside relation used to represent it

is also transitive. This is no coincidence: the representation for sets identifies a sets'

members as its inside points (possibly plus border points). Hence a sets' subsets are precisely

those that are drawn inside it (possibly plus sets drawn on or very near the border).
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5.3.3 Diagram-model link

Recall that in Theorem 1, we claim that i mpl i ci t (A� B) � A'� B' " A'� � -1(A), B'� � -1(B)

for a sub-class of DDLA diagrams (those which are believed accurate). This is needed to

show that for that sub-class, the diagram guarantees the existence of an equivalent model.

We now prove this result. 

First let us consider how it might be false. For sets created by applying a function or an

inverse function (i.e. B=f(A) or B=f -1(A)), this can happen quite easily as their representation

is inaccurate (c.f. §4.4.5). For other sets, problems can arise because of roughness of

drawing. Although normally roughness of drawing will only reduce i nt er i or (B), it is

possible in extreme cases for it to radically alter i nt er i or (B) such that

i nt er i or (� (B))� i nt er i or (B). Figure 5.3 shows an example of this.

The condition that basic sets are star-shaped (c.f. §4.4.3) gives one way of preventing such

cases from occurring. We show this via several lemmas. Lemma 19 proves that the 'closing

eye' structure shown in Figure 5.3 is essentially the only way in which this issue can arise.

Lemmas 20-24 then show that the restrictions we have applied in defining 'drawable sets'

(c.f. §4.4.3) are sufficient to prevent such cases. Note that these results also generalise to

representation systems where roughness of drawing is not caused by bitmaps (e.g. pen

drawings, or representations where human eyesight is the key factor) – a result shown in

[58].

Definition 5.3.3.1: Star-shaped

A set A is star-shaped (also referred to in some texts as centred) if �  a point

c� A such that " a� A, the line ac� A.
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Lemma 19: Given a connected set B with border b a simple closed

curve, and a point a���� B, a���� i nt er i or (���� (b)).����

Then ���� x,y���� B, line l=xy such that ���� (x), ���� (y) are touching squares

and either a���� i nt er i or (b���� l), or ���� (a) touches ���� (x) and ���� (y).

Proof:

Let M be a minimal subset of squares in � (b) such that 

a� i nt er i or (U({ B} � M)), and let BM = U({ B} � M)

a� i nt er i or (BM ) �  �  closed curve g� BM  such that a� i nt er i or (g).

M minimal �  g� U(m)� �  " m� M

Claim 1: U(M) is connected.

Suppose false: �  � M1,M2� M such that U(M1), U(M2) are not

connected. Let M3 = U(M1)� U(M2). Let B' = BM \ (M3\B) and note that

B connected, M a set of squares connected to B �   B' connected.

U(Mi) not connected, g a loop �   $ points x,y� g\M3 such that 

g:x® y passes through M1, g:y® x passes through M2

Let g1=g:x® y, g2=g:y® x

B' is connected, and x,y� B', therefore $ curve g'� B', g':x® y

Now gi� g' are closed curves, g1� g'� U(M2) =�  and g1� g'� U(M2)

=�

Also i nt er i or (g)� (� ii nt er i or (gi� g')� g')

g'� B' �   a� g', hence a� i nt er i or (g1� g') or a� i nt er i or (g2� g') 

WLOG say a� i nt er i or (g1� g')

But a� i nt er i or (g1� g'), M minimal �  (g1� g')� m� �  " m� M. So

this contradicts the minimality of M, hence M must be connected as

claimed.

Figure 5.4 gives an example illustrating this situation.
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Claim 2: |M|<3

Suppose false, and let m1, m2, m3 be distinct squares in M

Let xi be points in B� g� mi

Let g1 be the portion of g joining x1 to x2, and g2 the portion of g

joining x2 to x3

g a simple curve �   g1, g2 are disjoint except for x2

Now B connected �  �  curves g1', g2' � B such that g1' joins x1 to x2,

g2' joins x2 to x3.

g1� g1' is a closed curve. Moreover, we have a� i nt er i or (g1� g1'),

since otherwise we would have a� i nt er i or (g1'� g2� g3), which

would contradict the minimality of M.

Similarly a� i nt er i or (g2� g2')

So a� i nt er i or (g1� g1')� i nt er i or (g2� g2')

This is illustrated in Figure 5.5.

Now suppose g1', g2' intersect at a point y

Then let f be the path f:x2® y® x2 formed from g1', g2'

But then a� i nt er i or (f), which implies a� i nt er i or (B).
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Contradiction, hence |M|<3

Therefore g1'� g2' = { x2} . 

But then consider the path f ':x2® x3® x1® x2 made from g2', g\gi, g1'

respectively. This has a� i nt er i or (f') and f'� BM\mi – contradicting

the minimality of M. Hence |M|<3.

Note that M connected, |M|<3 �  M is composed of touching squares

Now let x,y be the entry and exit points of g in M.

M composed of touching squares, |M|<3 �  M can be in only two arrangements: a

1x2 rectangle, or diagonally touching squares. 

Suppose M is a 1x2 rectangle. This is convex, therefore the line

xy� M

Hence i nt er i or (g) \ i nt er i or ((g\M)� xy) �   M. 

a� M �  a�  i nt er i or (g) \ i nt er i or ((g\M)� xy)

Hence (g\M)� xy is a closed curve in BM such that 

a� i nt er i or ((g\M)� xy)

g\M� B, so a� i nt er i or (B� xy) as required

Otherwise M is composed of diagonally touching squares

Consider the 2x2 rectangle M' such that M� M'. 

If a� M' then a is in a touching square to M and we are done.

Otherwise, M' convex, a� M' �  a� B� xy as for the 1x2 case.

!
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Lemma 20: Given a triangle DDDDxyz such that x,y are in touching

squares in ���� , then there are no points that are clearly inside DDDDxyz.

Proof:

Suppose such a point exists. Then there is a 3x3 block of squares lying within

Dxyz (the square containing the point plus the touching squares).

So |x-y|, |z-x|, |y-z| > 3.

But x,y in touching squares  �  |x-y| "  � 8 < 3, which is a contradiction, hence no

such points exist.

Note that this result would fail if the definition of 'clearly inside' did not require a

border of empty space. Figure 5.6 gives a counter-example where a� B but 

� (a)� i nt er i or (� (B))

Lemma 21: Given drawable basic set B with clear interior B', then

B'���� B

Proof:

Suppose false �  � a� B', a� B

�  a� i nt er i or (� (B)) and � (a) does not touch any squares in � (B)

So by Lemma 19, �  points x,y� B such that a'� i nt er i or (B� xy)

All of DDLA's basic sets are star-shaped, hence �  point c� B such that lines xc,

yc� B

Let g� B� xy be a simple closed curve such that a� i nt er i or (g)

Suppose a� Dxyc. But then a� i nt er i or ((g\xy)� xc� yc) �  B. This contradicts

a� B, hence a� Dxyc

152

  The black curve is the border of B,

   the shaded squares are � (B).

Figure 5.6. Example of a� B but � (a)� i nt er i or (� (B)).



But by Lemma 20 there are no such points. This is a contradiction, hence we are

done.

Lemma 22: """"  drawable sets A, i nt er i or (���� (Ac))���� Ac

Note that bor der (A)� bor der (� (A)).

x� Ac �  x� A �  x� bor der (A), or �  closed curve f� bor der (A) such that

x� i nt er i or (f)

But then either x� bor der (� (A)) or f� bor der (� (A)) �   x� bor der (� (A))

� i nt er i or (� (A))

�  x� � (A)c

Lemma 23: Given drawable set B such that B was not constructed

using function or function inverse application, let B' be the clear

interior of B. Then B'���� B

Proof by induction on the structure of B

Suppose B is a basic set

True by Lemma 21.

Suppose B=B1� B2

Then the clear interior of B=(clear interior of B1)� (clear interior of

B2) �  B1� B2 by induction

Suppose B=B1� B2

Then the clear interior of B=(clear interior of B1)� (clear interior of

B2) �  B1� B2 by induction.

Suppose B=Ac

Then the (clear interior of B) � � i nt er i or (� (A)c) �  Ac

Theorem 24: Given ideal diagram D such that there are no function

objects in D, and sets A, B in D, then i mpl i ci t (A���� B) ����  A'���� B'

"""" A'���� ���� -1(���� (A)), B'���� ���� -1( ���� (B))

Suppose we have sets A,B,A',B' such that i mpl i ci t (A� B) and A'� � -1(� (A)),

B'� � -1( � (B))
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Now B, B' have the same clear interior, and � (A)=� (A') have the same border

i mpl i ci t (A� B) �  A is clearly inside B

�  � (A) �  (clear interior of B)

�  � (A') �  (clear interior of B')

�  � (A') �  B' (by Lemma 23)

�  A'� B' as required.

5.4 Examples of showing specific rules are

sound
The full set of soundness proofs for DDLA are given along with the axioms in Appendix 12.

Here we give three example soundness proofs; one for each type of redraw rule. Since we

want DDLA proofs to carry over to the algebraic version of analysis, we show soundness by

conversion for simple/branch rules, and soundness in EDDLA for animated rules.

5.4.1 Simple rule: open set definition

Let R:D0� D1 be the simple redraw rule shown in Figure 5.7.

The implicit relations in D0 are { set (X), poi nt (x), x� X} , and the explicit relations are

{ open(X)} .

The implicit relations in D1 are { set (X), poi nt (x), x� X, bal l (B), l i ne(e), B� X, 
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cent r e(B,x), r adi us(B,e),e>0} . The explicit relations are { open(X)} .

Hence    � (R) = “ � (D0) �  Q(R) l abel s(D1\D0).� (D1)”

= “ { set (X), poi nt (x), x� X, open(X)} � � B,e { set (X), poi nt (x), x� X, bal l

(B), l i ne(e), B� X, cent r e(B,x), r adi us(B,e), e>0} ”

which simplifies to:

              � (R) = “set (X), poi nt (x), x� X, open(X) �  � B,e. e>0, Be(x)� X”

But this is just the standard definition for an open set “open(X), x� X � � e>0.Be(x)� X”

(noting that # x,e � B=Be(x)). This definition is part of � , and therefore assumed to be sound

(c.f. §5.1.1). Hence R is sound by Theorem 17. 

5.4.2 Branch rule: set union definition

Let R:D0� D1,D2 be the branch redraw rule shown in Figure 5.8.

The implicit relations in D0 are { x� Y, x� X� Y} . The explicit relations are { unknown(x� Y)} .

Hence r el at i ons(D0)={ x� X� Y} . In the consequent diagrams D1, D2 we have r el at i ons

(D1)={ x� X� Y, x� X} , r el at i ons(D2)={ x� X� Y, x� Y}  and l abel s(Di\D0)=� �

Hence � (R) = “ � (D0) �  Q(R) � i l abel s(Di)\l abel s(D0) . � (D1)� ���� � (Dn)”

= “ { x� X� Y}  � � � � .(x� X� Y, x� X)� (x� X� Y, x� Y)”  

where the �  quantifier is not quantifying over any variables, since 

� i l abel s(Di)\l abel s(D0) = � .

Which simplifies to:
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� (R) = “x� X� Y �  x� X � x� Y ”

Again, this is just the standard definition for set union (which is part of � and therefore

sound by assumption). Hence R is sound by Theorem 17.

5.4.3 Animated rule: recognising Y���� X

Let R:T1-s-T2-f-T3� T' be the rule shown in Figure 5.9 for recognising Y� X. We will show

that it is sound be considering the possibility of an unsound application (i.e. an application

that created an inconsistent diagram from a consistent one).57

Proof that R is sound

Suppose R is not sound.

�   � D, D' such that D0 is consistent, D was drawn from D0 using sound rules D,

D R� D', but D' is inconsistent.

Let T� m� D. Without loss of generality, let the object labels in m(T)� D be the

same as those in T and assume y' is not used as an object label in D.

Let D=t ar get (R,D) and D' = R(D).

D consistent, D' inconsistent �  D consistent, D' inconsistent (since all other

branches of D, if any, are unchanged by the application of R and must therefore

have been inconsistent already).

57 The process we use here and in appendix A for checking the soundness of animated rules is slightly
laborious. It could probably be replaced by a general lemma covering the interpretation of
animated rules.
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D R� D' �  changes(D,D')={ � ,{ y} ,{ Y� X} ,� }  (that is, the universally quantified

point y is deleted, and the relation Y� X is added to diagram D')

D drawn using sound rules  �   D is consistent. Hence the statement Y� X must

be inconsistent with D.

D consistent, hence there exist models for D (note: if D is also accurate, then

obj ect s(D) is a model for D). Let M(D) be a model for D with the same object

labels. Y� X inconsistent with D �  � y'� M(D) such that y'� Y and not (y'� X).

Let A be the reasoning program D[y'/y]. But then by Lemma 6, A can be drawn

using D in the same way as for D. Hence t ar get (R,A) has y'� X. 

D sound �  A is consistent, \  y'� X. This is a contradiction, hence R is sound.

Note that this rule could not be implemented using a simple redraw rule. In proving it is

sound, we need to be able to perform a substitution (y' for y) and know that the method used

to show y� X will still work for y'. This is possible here because the animated pre-condition

controls the creation of x and thus prevents us from 'cheating' in demonstrating y� X.

5.5 Summary
This chapter continues the formalisation work started in §4.3, defining several concepts

relating to soundness. We have specified a semantics for our logic. This allowed us to show

that the inference mechanisms of DDL are sound, and to give tools for showing that the

individual redraw rules of DDLA are sound. The semantics explicitly links DDLA to its

domain, and – via the concept of accurate diagrams – provides a way of using that link in

DDLA reasoning. 

This chapter has also examined the assumptions underlying the project, concluding that we

cannot do away with the requirement for diagrams to be 'clear', where clear means that

objects and relations can be reliably identified. This could potentially be formalised by

developing an idea of valid and invalid diagrams based on clarity of representation judged

from bitmap comparisons. However, having examined the clarity requirement in the context

of DDLA representations, we conclude that it is reasonable.
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We have paid particular attention to the subset relation, analysing its representation at the

level of the physical drawing. This is because this relation is used as a reasoning short-cut as

well as a convenient representation. Our treatment of this relation reveals the potential for

misleading diagrams in extreme cases, and has demonstrated that these cannot occur in

DDLA.
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6 Evaluation

We begin by restating the aims of this project, and considering the ways in which such a

project can be said to succeed or fail. This then suggests the following hypothesis for

evaluation: “Computerised diagrammatic proofs are possible for analysis problems, and may

be easier (in some sense) than algebraic proofs” . This hypothesis requires independent

evaluations on the criteria of (1) soundness, (2) coverage of the domain and (3) ease of use.

The first criteria is evaluated by analytic studies, the second is a reasoned judgement, whilst

the third criterion is evaluated by an empirical study. The results loosely support the

hypothesis.

6.1 Evaluation criteria

6.1.1 Project aims

The overall aim of this project is to investigate the potential for applying a diagrammatic

approach to mechanised reasoning. This is motivated by the wider aim of producing theorem

provers which are easier for people to understand. The assumption underlying this project is

that, for some domains, diagrammatic reasoning is easier to understand for at least a

significant number of people. 

Since there has been little research to date in this area, and none in the domain we focused

on, the first stage of the project was exploratory. Its aim was to develop sufficiently

powerful diagrammatic techniques to tackle analysis problems. The techniques developed

should have the potential for practical application in mathematics teaching, where, we hope,

they will complement conventional methods (although the development of such an

application was beyond the scope of this project).

These aims led to the adoption of two goals:

1) To develop a formal logic that uses diagrammatic reasoning to solve problems in real

analysis.
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2) To make a case for this logic having advantages over the conventional algebraic

approach.

6.1.2 Ways of evaluating

We now consider how a project with these aims should be evaluated. There are levels of

success and failure. The basic criterion for such a project is the development of a sound

diagram logic. Given this, we identify several different axes along which the logic produced

should be measured:

1) The range of the logic.

The logic should cover an interesting range of theorems. This is important to both of the

project's goals. Clearly, there are degrees of success here. It is important that range is not

achieved at the cost of making the logic unwieldy.58

2) Implementation.

Computer implementations provide a safeguard against hidden assumptions that might

make the logic unsound. A reasoning method can appear analytic, whilst actually

requiring intuitive leaps, or 'magic steps' to work. By demonstrating that DDLA can be

carried out by a computer we show that it does not require any such magic steps. The key

thing is not the quality of the implementation (which is largely a factor of the time

invested), so much as the fact that the logic can be implemented. It is possible that a

logic could be developed that looks good on paper, but some of the steps prove

impossible, intractable, or just too difficult/time-consuming to break down into proper

algorithms. This would be a serious failure, although not necessarily a complete one, as

the work done might still have developed the theory of diagrammatic reasoning in useful

directions.

3) Usability.

The motivation for developing diagrammatic reasoning is mainly that it should be easier

for people to understand than algebraic equivalents, so usability is key to all work in

diagrammatic reasoning. Note that there are scenarios where - although in general -

58 The 'normal' test for this would be to compare the number of rules required to the range achieved.
Too many rules would suggest that the logic lacks flexibility and does not scale well. It is not clear
that this measure is the most appropriate for logics intended for human use. An empirical measure
(i.e. based on experimental study of use) would be better, although considerably more time
consuming.
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people find the diagrammatic proofs are no easier to understand, the project could still be

considered successful. These are:

a) A pattern can be found whereby certain types of student perform better with

diagrammatic proofs, whilst others perform better with algebra. This was the result of

Stenning et al's research with HYPERPROOF [51].

b) A pattern can be found of which proofs are harder/easier to understand with diagrams.

In either of these cases, the project would have demonstrated that diagrammatic

reasoning is useful in this domain, albeit only in certain circumstances. Moreover,

establishing conditions when diagrams are and are not useful would be a worthwhile

result in itself.

6.1.3 Hypothesis for evaluation

Considering the ways in which the project should be measured, suggests the following

hypothesis for evaluation:

Show that diagrammatic reasoning in the domain of real analysis is possible

such that:

1) It is sound (subject to reasonable assumptions).

2) A reasonable range is achieved without requiring an unwieldy set of rules. 

3) It can be implemented on a computer.

4) Some of the proofs produced are 'easier', either to produce or understand,

for a significant proportion of people.

The first three criteria relate to the goal of developing a formal logic that uses diagrammatic

reasoning to solve problems in real analysis. The section 'Mathematical Evaluation' tackles

how we measure them. The fourth criteria relates to the goal of producing a pedagogical

tool. How we measure this is tackled in the section 'Empirical Evaluation'. The criteria are

largely independent, and it is not necessary for the project to succeed at all of them. We

consider criteria (2) and (3) to be desirable, whilst (1) and (4) are crucial.

We summarise this hypothesis as “Computerised diagrammatic proofs are possible for

analysis problems, and may be easier (in some sense) than algebraic proofs” .
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6.2 Mathematical evaluation

6.2.1 Soundness

There are two aspects to soundness: soundness of the reasoning framework, and soundness

of the individual reasoning rules. Soundness of inference in DDL was shown in chapter 5.

The soundness of the DDLA rule-set is shown in Appendix A. Both of these are

demonstrated to the level of textbook mathematical proof, subject to certain assumptions

which we restate here:

1) That the standard approach to Euclidean-space analysis is sound. 

2) That the computer can produce reliable external representations.

Which we broke down into smaller assumptions:

a) The surface on which diagrams are drawn obeys Euclidean plane geometry upto

detectable differences.

b) We can divide this surface into a grid such that the computer can draw domain objects

on it upto the accuracy of the grid.

c) The computer can represent all explicit relations.

d) The computer can evaluate which relations will be implicit relations in the external

representation (that is, it can correctly apply the implicit relation rules).

3) That the user can correctly identify graphic objects and their labels.

4) That the user can correctly assess observed relations.

These assumptions were discussed in §5.1.1, where we concluded that they are reasonable.

That discussion revealed that assumptions 3 and 4 require a further assumption (or

restriction) that diagrams be of sufficient clarity for the user to parse. However this seems a

reasonable assumption (and is an implicit assumption in any non-discrete diagrammatic

reasoning systems). We therefore conclude that DDLA is a sound logic for theorem proving

in the domain of mathematical analysis.

6.2.2 Range

The range of DDLA is a small subset of that which can be represented/proved algebraically.

This was inevitable given the size of the subject. We explore whether DDLA covers an

interesting subset. For those areas not covered, we try to judge whether DDLA can
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potentially be extended to cover them, or whether the lack of coverage is due to a structural

limitation of our approach.

Range of representation

Logical statements

The inclusion of algebraic statements within DDL diagrams allows for a vast potential range

of expression. DDL reasoning programs can express arbitrary conjunctions, disjunctions and

negations of predicates with any (single) nesting of quantifiers. DDL rules can express any

statement of the form P � Q where P is a conjunction of predicates with any (single)

nesting of quantifiers, and Q is a disjunction of conjunctions of predicates with one

quantifier.

However, given that DDL is intended for human use, the theoretical range is possibly not as

important as the range for which DDL is of practical value. This is hard to measure, since it

is not so much a property of the logic, as of human understanding. Nor is it static; the 'useful

range' will to some extent depend on the task being performed, and the abilities and training

of the user. This 'practical range' is perhaps best shown by demonstration (i.e. by building

logics in DDL, such as DDLA, and showing that they can be used).

Domain objects

DDLA provides specialised representations for several different types of domain object and

can represent a vast range of different objects. However it has important limitations. There

are important classes of sets that cannot be represented, including sets of measure 0 (i.e. sets

composed of isolated points) and sets with an infinite number of discontinuities (e.g. � ).

There are also interesting functions that cannot be represented, including limit functions and

non-integrable functions. The most serious limitations of DDLA though, are:

1) That it does not contain the concept of the natural numbers.

2) That it cannot define specific sequences (though it can deal with generic ones).

Analysis concepts

DDLA defines a range of analysis concepts, including: open and closed sets, continuous

functions and convergent sequences. It does not cover the important concepts of

differentiation, integration and uniform convergence. The concept of a uniformly continuous
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function can be defined in DDLA, but we did not find any interesting results regarding it

that can be proved within DDLA.

Range of proof

DDLA is not a complete logic. Amongst other limitations, it lacks the ability to handle

certain types of proof. These include proofs involving recursion (e.g. proofs using repeated

bisection). Unfortunately, we have not found a characterisation for the class of theorems it

does cover. This forces us to evaluate range of proof in a 'soft' subjective manner. First we

look at DDLA's performance on some sample exam papers. We then consider the list of

theorems for which we have found DDLA proofs.

An empirical test of range

Quantifying the range of an incomplete reasoning system is not easy. As a crude metric, we

examined how well DDLA could perform in Analysis exams. For this, we used the past

exam papers from 'Fundamentals of Analysis', a 2nd year undergraduate course at Edinburgh

University [65]. Three papers were available: the 2001 exam, the 2002 exam and a specimen

exam for 2003.

The results of this exercise were disappointing: DDLA scored 17% (2001), 17% (2002) and

25% (2003). By far the largest obstacle was DDLA's lack of a mechanism for reasoning

about specific sequences. Note that DDLA was not designed with this particular course in

mind, and has not been adapted to fit this course in any way.

Theorems proved

We now look at the theorems for which we have produced proofs in DDLA. This is –

presumably – only a representative list of what can be proved in DDLA and not an

exhaustive one.

General theorems

	 (A open �  f-1(A) open) �  f continuous

	 f continuous, A open �  f-1(A) open

	 X, Y open �   X� Y open

	 X, Y open �   X� Y open

	 X closed, xn®  x a convergent sequence, xn� X  �   x� X
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	 f continuous, xn® x convergent  �   f(xn)® f(x)

	 X, Y closed �   X� Y closed

	 X, Y closed �   X� Y closed

	 f, g continuous �   fog continuous

	 f, g continuous �   f+g continuous

	 f, g continuous �   f.g continuous

	 f decreasing and surjective �   f continuous

Specific theorems

	 Br(x) open for r>0

	 f(x) = 1/x continuous

	 any given polynomial (defined over � +) is continuous (provable by recursion on function

structure – DDLA lacks a discrete generalisation mechanism, such as proof-by-induction,

to give the general-case proof). 

'Small' theorems

In proving the theorems listed above, we have also proved many small lemmas. Some

examples are:

	 r < r' �   Br(x) �   Br ' (x)

	 A� X, A� Y �  A� X� Y

	 f decreasing, f(x)>f(y) �   x<y

	 f(x)=x continuous

Counter-example proofs

	 not ( # A,X,Y . A� X, A� Y �   A� X� Y )   Oth  er candidates: X=empty-set   �    X  �  Y=empty-set, add 'not-open' rule, and do some not open proofs,   �  x  �  f  -1  (X)  

Summary

This list contains a spread of diverse and non-trivial conjectures. It therefore demonstrates

that DDLA does cover a moderately interesting range. However the 'big theorems' of

analysis, such as the intermediate value theorem or results regarding differentiation and

integration are noticeable by their absence.
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The paucity of counter-example proofs means that the suitability of DDLA for reasoning

about counter-examples has not yet been demonstrated (especially given that having

diagrammatic support for such reasoning complicates the formalisation of DDLA). This

aspect of DDLA must therefore be regarded only as an interesting line for future work.

6.3 Computer implementation: � � � � � � � ��

This section describes the implementation of DDLA as a program called � � �� � � � �� , which

is included on the CD-ROM accompanying this thesis. The description is given at the

user-level, focusing on design issues rather than algorithmic/programming ones. 

We first cover the motivation behind producing this program, showing that it is a necessary

part of this project. We then discuss how faithful � � �� � � � �� is to DDLA. � � �� � � � �� is not

perfectly faithful to the specification for DDLA; there are elements it does not implement,

and areas where it extends DDLA. However it is faithful enough to provide a good platform

for evaluating DDLA. §6.3.3 gives an overview of the user interface design (illustrated with

screenshots) and the underlying theorem prover.

In order to compare DDLA with a conventional logic, � � �� � � � �� is built to operate with

diagrams or algebra (c.f. §6.3.4). The algebraic mode is designed to be a 'fair' competitor to

DDLA. I have therefore also put considerable effort into the design of the algebraic mode.

6.3.1 Motivation

The development of � � �� � � � ��  was motivated by several considerations.

Firstly, as noted in §6.1.2, a computer implementation provides a safeguard against

developing a logic that looks good on paper, but in fact contains hidden complexities,

requiring intuitive leaps to make it work. 

Implementation is also crucial to the second, pedagogical, project goal. An interactive

theorem prover allows students to both learn and be tested using DDLA. This provides a

platform that can be used to run experiments, allowing us to evaluate the claim that

diagrammatic reasoning is (in some sense) better than conventional logic for this domain.

These experiments would not be feasible without a computer implementation of DDLA. The
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experimental subjects would probably not be familiar with formal logic,59 and explaining

how a rewrite rule system works would be hard enough in itself. It is easier and better to

present them with a computer program where the rigid nature of the reasoning is both

expected and enforced. Also, a proof in DDLA is not given by the finished diagram, but by

the drawing process. Capturing this objectively in a pen-and-paper experiment would be

difficult.

A computer implementation also provides a good way of demonstrating our ideas.

Moreover, the project aims were motivated by the idea of producing teaching software.

� � �� � � � ��  provides a base upon which such software can be built.

6.3.2 DDLA and � � � � � � � ��

Limitations

The main limitation of � � �� � � � �� with respect to the DDLA specification is that it does not

implement adaptive matching and condition updating (definition 4.3.3.6). Adaptive

matching is an interesting aspect of DDLA, potentially useful for exploring conjectures.

However our evaluation experiments were limited to short lessons with highly structured

problems (c.f. §6.4). Adaptive matching was therefore not necessary.

The other limitation is a minor restriction of the objects which can be created within

� � �� � � � �� . � � �� � � � �� cannot create sets from the cross product of intervals, and whilst

� � �� � � � �� can create basic rectangular area blocks, it cannot create compound area blocks

as specified in §4.4.3. These limitations slightly restricts the reasoning that can be

performed using � � �� � � � �� , but do not affect its behaviour within these restrictions.

Both these limitations are the result of focusing the work on � � �� � � � �� on more important

aspects, rather than any theoretical difficulties.

Extensions

� � �� � � � ��  extends DDLA in three ways. 

59 Formal logic is not included in the Edinburgh University undergraduate mathematics syllabus,
except via optional outside courses [66].
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1) It allows object labels to have meaning (i.e. object labels obey a compositional

semantics). 'Non-basic' objects such as X� Y are (typically) labelled by the program

according to how they are created. Under DDLA, they should be labelled with an atomic

token (e.g. Z), with the relation Z=X� Y being explicitly stated. In � � �� � � � �� , such a set

would be labelled X� Y, and no explicit relations would be added. This extension is

implemented at a cosmetic level (the program chooses 'X� Y' as the atomic token

labelling the set, and censors the statement 'X� Y'=X� Y).

2) It can hide object labels. This is done in some of the rules to make the diagram clearer by

reducing clutter.

3) � � �� � � � �� highlights inaccurate relations by drawing them in mauve. This is done to

draw attention to the inaccuracy. Inaccurate relations are generally avoidable, except

when proving an inconsistency. However they often arise when a case split is performed,

because typically the example initially drawn does not represent all cases.

It should be clear that these extensions improve diagram appearance without affecting the

logic in any serious way.

6.3.3 System design

� � �� � � � �� consists of a graphical user interface linked to an underlying theorem prover.

There is considerable interaction between these two parts, which is described below.§  6.3.3  

The Theorem Prover (TP)

The theorem prover aspect of � � �� � � � ��  performs several different tasks:

1) Finding valid matches between diagrams

2) Applying redraw rules (note that this often requires input from the user to specify the

appearance of new objects)

3) Detecting implicit relations

4) Performing implicit inferences

5) Detecting and 'creating' emergent objects

6) Checking proofs

We now give a brief description of the modules that perform these tasks.
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Diagram Matching

This module finds matches between diagrams, as specified by definition 4.3.2.4. This is a

constraint satisfaction problem, and is solved by a search. In the worst case the search is

O(mn) where n is the number of graphic objects in the source diagram and m is the number

of graphic objects in the target diagram. The use of heuristics – tweaked during program

testing – leads to reasonable performance for the problems used in the empirical

experiments and for small-medium sized diagrams.

  

Often there are several valid matches, in which case we wish to find all of them and let the

user select between them. It was found that in the test problems, many-to-one mappings60

were only desirable when one-to-one mappings did not exist. Therefore when searching for

diagram matches, � � �� � � � �� has an (optional) preference for one-to-one mappings, and will

only search for many-to-one mapping when there are no one-to-one mappings. This makes it

both easier to use (because the user has to make fewer decisions) and slightly faster61.

Applying Redraw Rules

This module applies a redraw rule, as specified by definitions 4.3.3.1, 4.3.3.5 and 4.3.3.2.

The difficult part of this is creating new objects. Unlike algebraic reasoning, it is not enough

to simply introduce a new variable; various parameters have to be set, so that the object can

be drawn. This process is partially automated and partially interactive. It is described more

in §6.3.3.

Semantic Knowledge

Several aspects of DDLA depend on being able to reliably evaluate implicit relations. This

is implemented by a 'semantic knowledge module' which contains functions for testing such

relations. In order for DDLA to be sound, these tests must be accurate upto observable

differences (c.f. §5.1.1). � � �� � � � �� does not strictly meet this criterion, at least with the

default settings: There are circumstances when the 'A� B' test can return 'true' when in fact A

is visibly not inside B. This is due to corners being cut to enhance performance. The 'A� B'

test is implemented by testing a sample of points in A for membership of B. In order to

strictly meet the requirements of DDLA, it should test a point for each pixel in the

60 Where multiple objects in the antecedent diagram are matched with one object in the target
diagram.

61 With one-to-one mappings only, the search space is reduced from O(mn) to O(m!/n!).
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representation of A. Instead, it tests a point for every 8 pixels. Thus if the representation for

A\B is narrower or shorter than 8 pixels, there is a chance that the system will not spot it.

Note that (a) this corner-cutting can be switched off, and (b) no instances of false answers

occurred in any of our experiments.

Performing Implicit Inferences

Implicit inferences are handled using a two stage process: First, equality is handled by

substitution. Other implicit inferences are then performed by a Prolog-style first-order horn

clause logic prover with loop checking. This is sound and complete for the simple reasoning

required. 

Detecting Emergent Objects

The emergent object detector spots emergent objects, creates a graphic object to represent

them and adds it to the diagram (c.f. §4.4.7). This is implemented using semantic

knowledge. It was found to harm system performance in two ways:

1) The greater number of objects slows down the diagram matching algorithm.

2) More seriously, the greater number of objects leads to many more valid matches when

applying rules, which the user has to select between. Most of these are not desirable.

Therefore this functionality is switched off by default. It can be activated via the options

menu or by special instructions in tutorial files.

User Interface (UI) Design

This project is not directly concerned with interface issues, and so a detailed description of

the GUI - or the design choices involved in making it - would be an unnecessary digression.

However, our aim in this project is to create an intuitive easy-to-use logic, so it is clearly

important that the system implementing it should also be intuitive and easy-to-use. This

means that the user interface is crucial. A considerable amount of work was therefore put

into producing a good interface. This section gives an overview of the interface, and

discusses some of the design decisions involved in making it. For a hands-on overview, a

short introduction to using the program is included on the CD-ROM.

Windows

� � �� � � � ��  needs to present information in several different contexts and of different types:

1) The conjecture being considered

170



2) The working diagram

3) The structure of the proof

4) The redraw rules available, and tools for applying them

5) Instructions/feedback to the user

6) Tutorials/lessons

This is too much to clearly present at once. Fortunately only portions of it are needed at any

one time. This suggests a system with different windows which can be opened and closed as

needed. Certain combinations should be simultaneously visible, and this constrains the size

of the different windows.

The system has four main windows: the 'working window' (which handles items 2, 3 and 5

from the list above), the 'theorem window' (item 1), the 'redraw rules window' (items 4 and

5) and the 'lesson window' (items 5 and 6). The different windows are described below.

Windows are colour coded to make finding and distinguishing them easy, even when

partially covered. The colour-coding uses pastel colours that will not conflict with the use of

colour in DDLA (c.f. §4.4.5).

The working window

This window displays the reasoning program (i.e. the structure of the proof) and the

currently selected diagram. There is also a message box at the bottom for displaying

instructions and comments to the user. A (scaled) screenshot is shown in Figure 6.1. 

The reasoning program is a rooted directed acyclic graph (often, but not always, a tree)

where nodes represent diagrams. The node corresponding to the currently selected diagram

is highlighted with a red border62. The tree can be navigated (i.e. different diagrams can be

selected) either by clicking on its nodes, or by using the stereo buttons underneath the

currently selected diagram. 

The diagram viewer allows the user to zoom in – a feature that is especially useful for

analysis concepts where tiny differences can be key. A small overview (top-right of the

diagram) allows the user to keep track of the whole diagram whilst zooming in on one part.

Algebraic statements are drawn in a separate window-pane (right of the diagram), which can

62 This should not conflict with the use of colour in DDLA, as the graph/node representation of the
reasoning tree is different enough from the DDLA representations as to define a separate context.
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be scrolled when too many relations are present to fit cleanly. Right clicking brings up a

pop-up menu that lists the object labels. This can be used to select objects when defining a

matching (c.f. §6.3.3), or to investigate unclear diagrams (the selected object is highlighted

and an algebraic description is given).

The theorem window

This window (shown in Figure 6.2) displays theorems or rules. Rules are presented

diagrammatically and algebraically. Antecedent and consequent are laid out horizontally as

A� C, rather than with the
A
C convention used in chapter 4 (which, whilst familiar to

computer scientists, is less well known amongst mathematicians). A short description of the

rule's meaning/use is also given. 
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Figure 6.1. The working window showing the reasoning program (top) and the current

diagram.



For animated rules, video-recorder style controls allow the user to play animations. For

branch rules, a 'switch case' button allows the user to flip between the different cases. These

controls disappear when not needed – hence their presence alerts the trained user to the type

of rule. This representation for branch rules is not ideal, and will probably be changed in

future development. It would be better to show both cases simultaneously. This would

require more space. The switch case button was implemented to suit the redraw rules

window (see below) where screen space is tightly constrained. A better presentation for

small spaces might be to show one case as a diagram, with the presence of other cases

indicated by node icons as used in the reasoning tree representation. Clicking on a node

would switch focus to that case (presented as 'shrinking' the diagram into a node icon, whilst

'expanding' the selected node icon into a diagram).

It is anticipated that theorems will not be as complex – in terms of the number of objects and

relations – as proofs. Hence the diagram viewers are smaller than the working window

diagram, and do not separate algebraic statements into a scrollable box.

The redraw rules window

This window (shown in Figure 6.3) allows the user to browse, select and apply redraw rules.

This window also has a message box at the bottom for displaying instructions or providing

feedback. This window must fit onto the screen alongside the working window, hence

diagrams are quite small. However the user can also access a more detailed view of the rule

(with larger diagrams and a description of the rule's meaning/use). This detailed view uses a

copy of the theorem window, but in the colour of the redraw rules window.
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Figure 6.2. The theorem window



The lesson browser

Shown in Figure 6.4, this is the top-level window for students. It displays tutorial pages,

which can mix text (including mathematical symbols) and graphics. For tutorials introducing

the system, it is highly desirable that this window should fit on screen with any of the other

windows. Tutorial pages can interact with the rest of the system. Links within the text are

used to activate other parts of the system (e.g. loading a theorem, displaying a proof or

displaying an example).

UI - TP interaction

There are several ways in which the top-level program interacts with the underlying theorem

prover. 
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Figure 6.3. The redraw rules window

Figure 6.4. The lesson browser



Drawing new objects

New graphic objects require various parameters to be set: a point needs co-ordinates, a ball

needs a centre and a radius, etc. These parameters can sometimes be calculated. For

example, if the new object is a point y such that y=f(x) and f and x are known. In other cases

there are choices to be made, e.g. when drawing an arbitrary point about which nothing is

known. The user is then asked to perform a 'drawing action'. The different drawing actions

are:

1) Picking a point

2) Drawing a bounding box

3) Specifying a length

All drawing performed by the user is checked by � � �� � � � �� to ensure that it matches the

drawing specified by the rule. Object labels are automatically chosen by the system in a way

that is tailored to each object type. They are either selected from lists specific to the object

type (e.g. points are x, y, z,... whilst functions are f, g, h,...) with subscripts if necessary, or

generated from the object's properties (e.g. a ball might be Br(x), a set might be X� Y). This

approach seems to work well (and the user also has the option of renaming objects).

Rules can, of course, create more than one object at a time. Often, although there are choices

involved in drawing several objects, drawing one will fix the parameters of the others. The

interactive side of the drawing process is therefore iterative: after each drawing action, the

system will attempt to automatically fill in any remaining choices before asking the user

again.

Diagram matching

When a rule has multiple possible matches the user must select amongst these. This is done

by selecting an object in the antecedent diagram (either by left-clicking on the object, or

right-clicking to call up a list of possibilities) and matching it with a suitable object in the

current diagram (again, by clicking on an object, or picking from a list). Highlighting and

explanatory messages are used to make this easier. This object-object match is then fed as an

extra constraint to the matching algorithm, which generates a new, reduced, set of possible

matchings. In the test problems, this cycle was repeated at most twice before the matching

was fixed.
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A different procedure is used in some cases. If the system determines that (a) the chosen rule

has several possible matches, (b) the chosen rule creates a new object, and (c) the choice of

how to draw this object will determine which match is desired, then the

diagram-matching/rule-application process can be streamlined. 'Draw a point' is a good

example of a rule where this is often possible. This rule frequently has multiple possible

applications (since we could draw a point in any set). However subsequent drawing choices

(e.g. where to place the point) usually fix which matching was desired. In such cases, the

system does not ask the user to select which match they want. Instead it asks the user to

draw the new object (a task they would have to do anyway), then it infers the correct

matching from their drawing.

An early version of � � �� � � � �� experimented with making some common 'basic' redraw

rules - such as 'draw a point' - available in the style of drawing tools in a graphics program

(i.e. via buttons at the side of the drawing area instead of rules selected in a separate

window). This was abandoned in favour of a more uniform approach. The reason for doing

so was to make the system easier to learn, which it does in two ways: firstly, a uniform

approach streamlines the interface. Secondly, with a uniform approach, basic rules such as

'draw a point' can be used to teach the rule application process for more complex rules. This

gives a smoother learning curve.

6.3.4 Algebraic mode

In evaluating this project (c.f. §6.4), we are interested in how DDLA performs in

comparison to a traditional algebraic approach – not how � � �� � � � �� performs. To this end,

� � �� � � � �� has been built to work in two modes: diagrammatic and algebraic. This allows us

to perform experiments comparing DDLA to an equivalent algebraic logic without the

effects of using a computer, the interface design, etc. distorting the results. 
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In the interests of fairness, considerable effort was put into making the algebraic mode as

user-friendly as possible. Where algebra allowed better representations, this has been used.

Moreover, 'free rides', which are one of the advantages of diagrammatic reasoning, have

been artificially incorporated into the algebraic mode as automated reasoning steps

(described below). In terms of presentation, the algebraic mode (which can handle

mathematical symbols and subscripts) looks more professional than the diagrammatic mode

(whose diagrams are not up to the standards of professional drawing software).

Much of the functionality of the algebraic mode is implemented by converting diagrams into

text. Hence a side benefit of the work on this mode is that � � �� � � � �� can produce an

algebraic proof from purely diagrammatic reasoning.

The user interface in algebraic mode

Figure 6.5 shows the working window in the same state as in Figure 6.1, but in algebraic

mode.

The user interface is almost identical to the diagrammatic one. The only differences are:

1) The user does not have to draw new objects – their descriptions are automatically

created.
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Figure 6.5. The working window in algebraic mode.



2) The working window 'page' can optionally display information on the rules used in a

proof.

3) Animated rules are presented without animation, using quantifier symbols instead.

4) Branch rules are presented with all the cases visible at once, instead of needing a switch

button to flip between them (i.e. as “P  �   Case 1: ... or Case 2: ...” ).

Note that except for the use of quantifier symbols instead of animation, all of the interface

differences are clearly in favour of the algebraic mode. The system can generate algebraic

translations of redraw rules. However whilst these are readable, it is often possible to

improve on them. For example, the automatically generated ball definition “Given a ball Br

(x), Given a point y� Br(x), Let d be the line x-y � r>d” can be simplified to “y� Br(x),

d=|y-x| � r>d” . Therefore, for the evaluation experiments, handwritten translations of rules

were used.

Reasoning in algebraic mode

The algebraic mode is structurally identical to the diagram mode. That is, it uses the same

redraw rule engine for reasoning. However there are of course no implicit relations or

emergent objects since these are diagrammatic features. There should be no implicit

inferences, as this is also a diagrammatic feature. However they are (optionally) performed

as automated reasoning steps. Relations generated by the implicit inference rules are not

automatically added to the proof-state (as with diagrams), but such relations are available to

the matching algorithm. When an implicit inference is used, this is stated in the proof state,

as shown in Figure 6.6. This is done so that algebraic proofs are as short as diagrammatic

ones and do not involve more rules.
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6.3.5 Testing

� � �� � � � �� was tested both at the level of individual functions and as a whole system, to

verify that it behaves as required (i.e. according to the rules of DDLA). These tests involved

a wide range of problems, but were not in any way exhaustive. � � �� � � � �� was also tested

during the experiments described in §6.4. This involved only a small set of problems, but

with a number of users (who – through working in different ways – provide a better

safeguard than a single tester). Again, these tests showed that � � �� � � � �� behaves as

required. There are bugs in � � �� � � � �� . However these lead to system failure, rather than

unwanted behaviour. Whilst this is not desirable, it does not reflect on our claim that DDLA

can be performed by a computer. There was no formal verification of the code (which would

be highly unusual for such a project). Given the size and complexity of the � � �� � � � ��

program, it is highly likely that there are some bugs that produce unwanted system

behaviour. We consider it a sufficient standard of correctness for a project such as this, that

no such bugs were found on a reasonable range of test problems.63

6.3.6 Summary

In order to evaluate DDLA – both as a valid formal logic and as a more intuitive alternative

to conventional logic – we have produced a computer implementation which we call

� � �� � � � �� . � � �� � � � �� is an interactive theorem prover which can perform both

diagrammatic reasoning and algebraic reasoning. There are some differences between

DDLA and � � �� � � � �� (c.f. §6.3.2). We judge that these differences are minor, and do not

cast doubt on the fact that DDLA reasoning can be carried out by a computer.

63 A pessimistic view: this just demonstrates the inadequacy of the tests.

179

Figure 6.6. A proof-in-progress in algebraic mode, showing an automated inference.

The rule 'Open ball - recognise point' requires e>e1, which is automatically deduced

from e$ d, d>e1).



6.4 Empirical evaluation
In our hypothesis, the hardest part to test is the criterion regarding human usage. There are

various possible experiments that could be carried out:

1. Test for user recall of definitions and proofs.

2. Test for user production of new proofs to similar but previously unseen problems.

3. Collect anecdotal evidence on users impressions.

4. Analyse the amount of searching done by users in producing a proof.

5. Test how difficult it is to spot that a theorem is beyond the system's capability to prove or

disprove.

6. Test for the effect of using the interactive theorem prover on subsequent pen-and-paper

work.

It would be interesting to carry out these tests for both experts and non-experts in the

domain. In practice it was not possible to carry out all these tests, and we focused on

non-experts, since the system is conceived of as an educational tool. Also, visual

representations are likely to be most beneficial to non-experts, as experts may have already

developed their own visualisations.

6.4.1 Constraints

The main constraint on the design of the experiments was the difficulty of finding suitable

volunteers. It was decided that the experiments must be kept relatively short, so that the time

commitment required from volunteers was not prohibitive. We fixed on 1½ hours as a

reasonable compromise between attracting volunteers and experiment content.64 This limited

both the material that could be taught and the testing that could be done of student's

learning. Other constraints were the need to extract data suitable for objective analysis, and

the tight time-frame for this stage of the project.

6.4.2 Test subjects

We tested two groups of subjects:

1. First year undergraduate mathematics students.

These (hopefully) have some mathematical ability, but were unfamiliar with the domain,

and probably only have a loose idea of the nature of mathematical proof. They were

tested in their 2nd term, before they covered any analysis concepts in their course. In

64 By comparison, Stenning et al's studies on HYPERPROOF were conducted over the length of a full
course in logic.

180



particular this means that they were unlikely to have formed their own internal

representations for such concepts.

2. Older (2nd and 3rd year) undergraduate mathematics students.

These have studied analysis, and may have developed their own internal representations

for concepts from the domain. They should also be more familiar with the nature of

mathematical proof.

Experiment Design

First Year Undergraduates

We wished to compare behaviour between diagrammatic reasoning and equivalent algebraic

reasoning. Thus the subjects were randomly divided into two groups: one worked using

diagrams, one using algebra. We wanted to present the diagrams and the algebra in as

similar a form as possible in order to prevent other effects interfering with the results. To

this end, � � �� � � � �� was built to work in two modes (diagrammatic and algebraic). As

discussed in §6.3.4, the two modes are structurally identical. This should minimise the

potential effect of differences in the interface/presentation methods. Both diagram and

algebra groups were taught identical material (although the wording of the teaching material

differed slightly in places). The experiments were conducted in groups of between 1 to 3

students. Each student had a computer running the � � �� � � � �� system. Cooperation was not

allowed. I provided support for problems in using the system, but not mathematical

problems.

1st session: Training

Students were introduced to the system and taught the concepts of open sets and continuous

functions. The timetable for these sessions was:

	 5 minutes spoken introduction.

	 5 minutes pre-test of basic spatial and algebraic abilities.

	 30 minutes working with the system.

2nd session: Testing

These sessions took place between one and two days after the 1st session, allowing time for

the material to be absorbed but hopefully not forgotten. The timetable was:

	 5 minutes re-familiarising students with the system through simple tasks.
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	 30 minutes solving problems of increasing difficulty. These problems were all of the

form “Given P, prove Q”. For each problem, students were given the correct set of rules

needed to solve it.

	 5 minutes filling in a feedback form.

Data gathered

The experiment collected the following data for analysis:

1) Crude measures of basic spatial and algebraic abilities via the pre-tests.

2) Success at solving the test problems.

3) A log of the following user actions (with time of action).

4) Student's views via the feedback forms. These asked students to rate the system out of 5

on the following criteria:

a) Easy to learn

b) Easy to use

c) Helpful for learning mathematics

d) Helpful for understanding mathematics

e) Helpful for doing mathematics

f) Overall score

They were also asked for comments on each rating.

Older Undergraduates

Both the teaching materials and the � � �� � � � �� program were revised slightly in the light of

the first set of experiments (c.f. §6.4.3 below). The changes made were:

1) Experiments were conducted in one sitting of 1½ hours with a five minute break

half-way, instead of two sittings of 40 minutes. This change was made because in the

previous experiment: 

a) Some of the students dropped out after the first session.

b) When asked what would make volunteering more attractive, some of the students

commented that they would have preferred a single session.

2) Some minor improvements in � � �� � � � ��  (both to the interface and in terms of stability)

3) Only one analysis concept – open sets – was taught.

4) The number of exercises on open sets was increased from 3 to 13. This was done so that

question score would give a better (finer grained) measure of performance. The new

exercises were not all of the same type. As well as problems of the form “Given P prove
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Q”, students also had to answer true/false questions (i.e. “ Is P� Q a theorem?”) and a

counter-example question.

Otherwise the experiments were identical.

6.4.3 Results

First Year Undergraduates

10 subjects were recruited.65 They were randomly assigned to the diagrams or algebra test

group so that each test group had 5 subjects. The data gathered from this experiment

tentatively supports our hypothesis. 

Teaching both open sets and continuity turned out to be too ambitious. Only a couple of the

students reached the exercises on continuity, and none completed any of them. Hence our

results are limited to only three problems on open sets. This, combined with the small

sample size, makes success or failure on the problems too coarse grained a measure: the

results from the two groups are virtually identical. The students had mixed success: some

got all 3 solutions out, some gave up, some ran out of time. The average success rate was

exactly 60% for both groups.

Data from the feedback forms is unreliable. The presence of the experimenter and the

politeness/timidity of the 1st years combined to encourage only positive responses from most

of the students. The average score for each question was 4 out of 5. In my opinion, this did

not reflect their 'true feelings', as most of the students were (understandably) quite lost for

much of the time. The comments were similarly too positive to be trustworthy as evidence. 

The diagrammatic-reasoning group mostly made the right sounds:

“ It helps to show maths 'in action'”

“The pictures were useful for helping understand what was going on. Better

than written explanations a lot of the time.”

“Easier to understand if things are presented visually which would make this a

very useful learning aid, as it would be remembered more easily”

65 20 students were signed up, but only 10 turned up.
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Although there was one negative comment:

“While some things are easily visualised as pictures, I find others get too

complicated and written stuff is better.”

The user logs provide more interesting results. For each successfully completed problem, we

calculate two measures of 'unnecessary actions' as follows:

1) Each attempt to apply a rule counts as a 'move'

score = (no. moves made)/(minimum no. moves necessary)

2) Each attempt to apply a rule and each navigational step counts as a 'move'

score = (no. moves made)/(minimum no. moves necessary)

These scores were only calculated for complete answers. We could also include incomplete

proofs, however it is unclear how these should be compared with those from complete

answers. Since the completion rate was identical for both groups, this should not distort the

results. From individual scores, we calculate the mean unnecessary action score per question

for each group. The results are shown in Table 1. They show the diagrams group making

considerably fewer mistakes. Unfortunately the small sample size means that we cannot

draw any firm conclusions from this experiment.

Older undergraduates

10 subjects were recruited. They were randomly assigned to the diagrams or algebra test

group so that each test group had 5 subjects. One run was rejected (the student turned out to

be a wayward biology student), and so another was randomly rejected from the opposing

group, leaving 8 students. However inspite of the small size, the data gathered from this

experiment showed statistically significant support for our hypothesis.

The changes in the experiment design were successful in producing richer results. The

average score (percentage of exercises correctly answered/solved) for the diagrams group

was 63% (with a standard deviation of 6%), whilst the average score for the algebra group

was only 42% (with a standard deviation of 20%). Moreover this difference is significant
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Measure 1 Measure 2

Diagrams Group 1.49, s=0.98 2.29, s=0.95

Algebra Group 2.74, s=1.99 3.32, s=1.81

Table 1. Results from experiments with 1st years.



(with 95% confidence using a one-tailed t-test). Hence the experiment supports our

hypothesis.

As in the previous experiment, we also see the diagrams group solving problems more

quickly (i.e. using fewer interactions with the system, as measured by the two scores used

for judging the 1st years' performance). The 'Measure 1' results here are statistically

significant (with 95% confidence using a one-tailed t-test). 

Again, the pre-test was a poor indicator of performance. There was some correlation

between displaying a bias towards sentential or visual reasoning in the pre-test, and

subsequent performance on the exercises. However the effect is too weak for any

conclusions to be drawn.

The data from the feedback forms is less positive than from the 1st years, and therefore

perhaps more reliable. Perhaps surprisingly, the algebra group were slightly more positive.

They gave the system an overall score of 3.75/5, versus 3.25/5 from the diagrams group.

This pattern of a slightly higher score from the algebra group was repeated in the more

specific questions, with the exception of the question on understanding where the diagrams

group gave a slightly higher score (3.5 versus 3.25). This pattern can be at least partly

explained by differences in presentation standard: the algebraic mode of � � �� � � � �� looks

and feels more 'professional'.

The subjects were much more sparing in their comments than in the previous experiment.

Most did not write anything, and the few comments we did get were almost entirely related

to minor defects in the system's interface. There was only one comment relevant to the use

of diagrams: “ I found it very useful to visualise the problems” .

6.4.4 Future work

Whilst we have found statistically significant results, our evaluation of using DDLA is by no

means exhaustive. Further experiments are desirable. Most obviously, the experiment

conducted could be repeated (a) with more subjects, and (b) looking at usage over a longer
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Score Measure 1 Measure 2

Diagrams Group 63%, s=6%  1.27, s=0.03 2.12, s=1.08

Algebra Group 42%, s=20% 1.63, s=0.19 2.41, s=0.63

Table 2. Results from experiments with 2nd/3rd years.



time period (allowing us to both cover more concepts and investigate learning rates).

Different experiments are also desirable. In §6.4 we identify 6 ways in which the usage of

two logics could be compared:

1) Compare recall of definitions and proofs.

2) Compare the production of new proofs to similar but previously unseen problems.

3) Anecdotal evidence of user's impressions.

4) Analyse the amount of searching done by users in producing a proof.

5) Compare how difficult it is to spot that a theorem is beyond the system's capability to

prove or disprove.

6) Test for the effects (if any) of using the interactive theorem prover on pen-and-paper

work.

Of these, we have so far only carried out (2) and (3). There is clearly room for several

further studies on the question of the advantages and dis-advantages of systems such as

DDLA/� � �� � � � �� . And that is without touching on the question of why the system gives

these advantages and dis-advantages. It would also interesting to test some of the design

ideas: For example, what difference does animation make? What difference does altering the

implicit relation rules or emergent objects make?

6.4.5 Conclusion

These experiments could be criticised on several grounds, largely related to scale: they

should have involved more students, covered more material and subjected the students to

more tests. In particular the 5-minute pre-test to determine sentential/visual bias was too

crude to be useful. Unfortunately, a more thorough empirical investigation was beyond the

scope of this project.

However these experiments do loosely support the hypothesis that diagrammatic reasoning

is – in some sense – easier than algebraic reasoning in this domain. The performance

measures show those students using diagrammatic reasoning outperforming those using

algebra. Although many of our results are not statistically strong, probably due to the small

size of the test groups, we did find a statistically significant difference between the two

reasoning styles for the older group.
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6.5 Summary
This project set out with the aims of producing a formal logic that uses diagrammatic

reasoning to solve problems in real analysis, and demonstrating that this was better in some

way than conventional logic. Considering this, we fixed on the hypothesis: 

"Diagrammatic proofs are possible for analysis problems, and may be easier (in

some sense) than algebraic proofs"

This hypothesis was evaluated against four criteria:

1) Soundness.

2) Range.

3) The reasoning can be implemented on a computer.

4) The proofs are 'easier' for a significant proportion of people.

DDLA passes the soundness (with acceptable qualifications). Its performance is mediocre

on range, covering a fair number of interesting theorems, but missing many important

concepts and theorems. It seems plausible that the limited success on this criterion is due to

the limited scope of this project, rather than any inherent limitations in diagrammatic

reasoning (see §8.2 for suggestions to extend DDLA). Hence we judge that mediocre

performance here is sufficient, and is not evidence against the hypothesis.

DDLA passes the implementation criterion.

Our testing of criterion (4) was limited. The results we have are positive, but further

experiments would be required to draw any definite conclusions.

Based on this analysis, we conclude that DDLA successfully meets its aims. Although not in

any way conclusive, this gives a reasonable case in favour of the hypothesis.
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7 Related Work

In considering how DDLA/� � �� � � � �� fits into the field, we examine the most closely

related work. Diagrammatic reasoning is a relatively new area of research, and there is little

directly related work (c.f. §2.3). Moreover, this project has focused on a domain that has not

previously been examined by the diagrammatic reasoning community. Nevertheless, we can

find similarities between our work and some prior (and ongoing) research projects. In §2.3,

we identified two such systems: DIAMOND and the constraint/spider diagram representation.

The 'dynamic' style of reasoning that we develop (i.e. reasoning by drawing, rather than

reasoning from pre-drawn diagrams) shares ideas with Jamnik's DIAMOND system [24]. This is

not surprising, given that this project began as an extension of DIAMOND. The representation

used for objects and relations in DDLA owes much to common conventions (e.g. the use of

arrows to denote functions). The representation we have developed for logical concepts

(such as quantifiers) has novel aspects, but comparisons are possible with other systems. Of

particular interest is Howse et al's work on constraint/spider diagrams, which covers

quantifiers [11] (and is perhaps currently the only 'live' project in the field that does so).

Our comparison shows that all three systems (DDLA, DIAMOND & spider diagrams) are quite

different, and none are well-suited to the other's field. We trace these differences to

differences in the domain and the goals of each system. This highlights some of the design

principles underlying their development. Whilst ideas from one area can be applied to

another, it seems highly unlikely that a universally superior representation system exists.
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7.1 DIAMOND

Jamnik's DIAMOND system uses diagrams to prove theorems in natural number arithmetic.

Diagrams in DIAMOND consist of arrangements of dots. The dots represent numbers (i.e. 3

dots for the number 3), and their arrangement represents relations between them (e.g. a

square arrangement for the relation 9=32). A proof consists of constructing a number in one

way (e.g. drawing a square to get a square number), then manipulating the diagram – often

by deconstructing it – to show that the number has other properties (e.g. breaking a square

into nested L-shapes to show that 32=5+3+1). The DIAMOND system supplies tools for

performing these drawing steps and manipulations. It requires the user to supply example

proofs for a couple of specific cases. The system then attempts to find a general proof

procedure which will work for all cases. The validity of the general proof procedure is

checked using meta-induction (that is, by showing that if P(n) is a valid proof for case n,

then P(n+1) is a valid proof for case n+1).

7.1.1 Similarities

This project was initially conceived as extending Jamnik's work to a continuous domain, and

so it is not surprising that there are some strong similarities between the two systems:

	 Both systems use schematic proofs (i.e. proofs as programs which generate a family of

specific-case proofs) defined using specific cases.

	 The drawing/manipulation steps in DIAMOND can be thought of as redraw rules.

	 Both DDLA and DIAMOND use rectangles ('area blocks' in DDLA) to represent

multiplication (e.g. y=x2 ) as an implicit relation.
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7.1.2 Differences

Although this project took Jamnik's work as its starting point, the differences between the

domains – one countable, the other continuous – have led to radical differences in the final

reasoning systems.

Differences in reasoning methodology

	 Although DDLA uses specific examples for representations, it uses reasoning steps that

can be applied to any case and so produces one proof for all cases. By contrast, in

DIAMOND the specific proofs are altered for each case. This is because for theorems

provable in DDLA, there are smooth transitions between different cases, whereas in

DIAMOND's domain there are discrete jumps between cases. Thus the range of theorems

that the two systems can prove is entirely distinct, and this is not simply because each has

not been applied to the other's domain.

	 DIAMOND does not cover counter-example reasoning. It is not clear that diagrams are

particularly useful for counter-example reasoning in DIAMOND's domain.

Differences in representation

	 Quantifiers: DIAMOND only handles concepts of the form " n.p(n). DDLA has to handle

concepts involving more complex quantification such as alternating quantifiers.

	 Objects: The two systems handle disjoint collections of objects. DIAMOND represents

natural numbers. DDLA can represent a range of different objects (sets, real numbers,

functions, etc.) – but not natural numbers.

	 Relations: DIAMOND can state relations connected to object shape (e.g. a=b2). DDLA

incorporates a variety of ways of stating relations: implicitly (e.g. x� X), graphically (e.g.

open(X) or a=f(b)) or algebraically (e.g. ct s(f)). This allows it to cover a wider range of

relations.

	 Directness: All DIAMOND's representations are direct, whilst some DDLA representations

are indirect (e.g. 2D functions). This is a necessary consequence of DDLA's domain.

	 Clarity: Clarity is not an issue in DIAMOND, as its domain allows for the clear separation of

diagram objects. Hence, reasoning in DIAMOND does not require the assumption made in

§5.1.1 that users will create readable diagrams.
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Other Differences

There are also differences that stem from the different goals of the two projects. The work

on DIAMOND was motivated by theoretical concerns (i.e. demonstrating that the type of

reasoning it embodies can be formalised). The system was not intended to be a practical

tool, and consequently its potential applications are limited. It is a proof checker for

established proofs that humans find intuitively clear and do not need checking. Since the

user must also supply the proof, it is hard to see any applications, at least without further

work. By contrast, this project had both theoretical and practical goals. As a result, its

design was geared towards producing a practical and user-friendly system with educational

applications in mind.

7.2 Spider diagrams & constraint diagrams
The spider/constraint diagram family of representation schemes is perhaps the most

successful work on representing disjunctions and negations in diagrams. Spider diagrams are

an extension of Euler circles and Pierce Diagrams developed by Howse et al [22]. Spider

diagrams can express membership and subset relations and cardinality constraints.

Reasoning systems have been developed for spider diagrams, and been shown to be sound.

The objects in spider diagrams are zones formed by oval contours (representing sets with

overlap=intersection), points (representing members of sets), plus relation representations

such as 'spiders' (linked points representing statements of the form x� A� B), ties, strands

and shading (allowing cardinality statements). Spider diagrams are not only more powerful

than Euler circles, they are also easier to use, due to innovations such as projections (c.f.

[12]) and (obviously) spiders. Constraint diagrams further extend spider diagrams by

allowing universal quantification and relational navigation (c.f. [9]). Constraint diagrams

include arrows (representing arbitrary relationships/functions) and compound diagrams (a

disjunction of diagrams). Figure 7.2 shows an example spider diagram, and Figure 7.3 an

example constraint diagram.
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Constraint/spider diagrams are a very different system to DDLA. A short list of the

differences serves to show that the two systems cannot be considered rivals:

	 Although reasoning methods have been developed for constraint diagrams (now

including automated reasoning), their primary use is as a representation system – whilst

DDLA is primarily designed for reasoning. The reasoning methods used in the two

systems are too different for a fruitful comparison to be made.

	 Constraint diagrams are general purpose, whilst DDLA is domain-specific.

	 Constraint diagrams use an abstract indirect representation (e.g. within a single diagram,

points can represent people, books, etc.), whilst DDLA objects are as direct as possible

(i.e. tied to specific (classes of) models).
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Figure 7.3. A constraint diagram expressing (amongst other

constraints) “Any library book that is on hold, must be the

same publication as that associated with the reservation for

which it is on hold.”

Figure 7.2. A spider diagram.



Nevertheless there are interesting comparisons that can be made between constraint

diagrams and DDLA diagrams. Both tackle the issues involved in representing complex

statements involving quantifiers and arbitrary relations. The solutions in [11] for handling

quantification have similarities to our approach. It is also instructive to compare how the

two systems handle disjunction and negative statements.

7.2.1 Emergent objects

Emergent objects occur in spider diagrams when a zone is created by the intersection of two

other zones. Spider diagrams make use of these emergent zones. The same situation can

arise in DDLA – however after experimenting with emergent objects, we decided instead to

require that the user must explicitly create intersections if they want to use them (c.f.

§4.4.7).

For representation purposes, the spider diagram interpretation is more intuitive. There are

two reasons, though, why it does not it work well for DDLA:

1) Without spiders (which can be used to ignore emergent intersections), a diagram with

emergent objects often requires more unknown relations. This distracts attention from

more important relations.

2) When applying rules, the greater number of sets represented in the diagram leads to a

greater number of valid matches, which the user then has to select between. Most of

these are not desirable, and so having emergent objects slows down the rule application

process.

The first problem is a consequence of a design choice regarding representing disjunction,

which we could make differently (c.f. §7.2.2). However the second problem cannot be

avoided in the type of rule-based reasoning we use. Hence this difference reflects the

different intended uses of the two representations.

7.2.2 Representing disjunction

DDLA handles disjunction by giving multiple diagrams. Spider diagrams do so by

introducing a special notation – the spider. Spiders allow several cases to be shown in one

diagram. Although arguably not as straightforward as using different diagrams for different

cases, spiders are reasonably intuitive once learnt. Moreover, they avoid splitting into

multiple diagrams. This is a strong asset, since it allows for a much more compact

representation. 
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This disjunction notation only works for the membership relation. Membership statements

combined with appropriately labelled sets can be used to represent disjunctions involving

other relations (e.g. “x<y or x� y” can be represented as “x� { x':x'<y} � { x':x'� y} ” ). However

this forces us to represent relations in terms of sets, which does not seem to be an intuitive

representation for all relations. Other conventions can be used for disjunctions involving

other relations (e.g. the use of '?' shapes in HyperProof – c.f. §3.3.1). The disadvantages of

doing so are: 

1) Each such convention must be learnt by users, creating a steeper learning curve.

2) More importantly, developing a set of conventions that gives good representations for

disjunctions involving a range of different relations is a hard, and perhaps impossible,

project.

Since we need to represent case splits over a variety of relations in our work, the specialised

notation approach embodied by spiders seems unsuitable. The multiple diagram approach is

not ideal, but it is the simplest and most flexible. Hybrid approaches – using spiders for

disjunction over membership (i.e. x� P� Q) – and multiple diagrams for other disjunctions –

are possible. A good case can be made for giving the inside relation special treatment, since

it is such a strong visual representation. Hence a hybrid approach would probably be better,

even though it would involve slightly more learning for users. In future developments of

DDLA, we will strongly consider adding spiders.

7.2.3 Representing negatives

Constraint diagrams can represent negative statements of the forms a� b, a� A. These

statements are represented as implicit relations (that is by drawing two separate points for

a� b, and by drawing a outside A for a� A). Explicit annotations can be used to over-ride this

default reading.

DDLA does not allow implicit negative relations.66 Not only does this mean that DDLA

must rely on algebraic statements for negation, it is also probably less intuitive than the

spider diagram interpretation (at least when learning the system). The reason we do not use

implicit negative relations in DDLA is that we usually wish to reason about the general case

(e.g. a=b or a� b; typically a=b will be a 'degenerate' case), yet have the proof cover all

66 Although a� A can be represented implicitly, provided Ac is explicitly created before drawing a.
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cases. Hence implicit negative relations would require almost constant use of the explicit

over-ride annotations.67 Thus this difference can be traced to the different primary uses of

DDLA and constraint diagrams (i.e. reasoning versus representation). 

7.2.4 Representing implication

Spider diagrams can represent statements of the form P(x)� Q(x) using sets (i.e. by drawing

{ x:P(x)} � { x:Q(x)} ). DDLA uses redraw rules with an antecedent and a consequent

instead.68 Both are equally general. However the set based representation is arguably more

natural for taxonomy-type statements (e.g. “pengui n(x)� bi r d(x)” ), whilst the rule based

representation is better for other statements, especially those involving non-unary relations

(e.g. “ l oves(x,y)%l oves(y,x)� happy(x)” ).

7.2.5 Representing quantifiers

Only points and spiders are quantified over in constraint diagrams. Quantifier type is

handled by drawing points in different ways. That is, the representation uses different

primitive objects for the different quantifiers: • for “ � a point” , � for “" points” . Using

different objects to represent quantifier type would not be suitable for our analysis diagrams,

where we variously wish to quantify over points, sets, functions, lengths, etc., as it would

involve introducing multiple representations for each type of object. This would quickly get

confusing. Using two colours to distinguish between quantifier types is equivalent though,

and adapts well to multiple object types.

Quantifier ordering problems are dealt with by labelling quantifiers with numbers. This is

logically equivalent to our use of animation. It lacks the potential appeal of linking hierarchy

to chronology, but is better suited to 'static' mediums (e.g. paper representations), where

animation is reduced to comic-book style diagram chains which both consume more space

and are harder to follow.

As noted in §4.2.7, DDLA only expresses one nesting of quantifiers (i.e. questions of

quantifier scope are settled by restriction). Constraint diagrams allow more complex scoping

of quantifiers (i.e. multiple nestings) provided the objects involved are linked by relation

arrows. A quantifier's scope is determined by analysing the dependencies of the objects

67 Using appealing graphical annotations (e.g. spiders) would improve this somewhat.
68 Using subset for implication is possible in DDLA, but it is not something we have explored.
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involved. It should be possible to apply a similar strategy in DDLA, although we have not

found it necessary so far. See [9] for details of the constraint diagram approach.

7.2.6 Domain flexibility

Constraint diagrams can represent statements from any theory based in first-order set-theory

with functions. This is a very flexible framework that can be applied to a wide range of

domains. By contrast, the semantics of DDLA specify that objects are interpreted as being in

� 2, and hence DDLA can only be applied to domains that contain � 2. This is a key

difference between the two systems, from which many of the other differences stem: spider

diagrams grew out of work on UML, and are intended to be useful in a range of disparate

domains; DDLA is specialised for abstract geometry.

The two systems illustrate well the trade-off between flexibility and 'power'. DDLA cannot

be used except for analysis (and, potentially, related subjects), but constraint diagrams –

whilst in principle capable of working in any domain – are not best suited to geometric

domains. This is demonstrated by trying to represent DDLA rules as constraint diagrams.

Figure 7.1 shows the same statement, represented in constraint diagrams and as a DDLA

rule. By using specialised object types and specialised ways of stating relations, DDLA

gives a much simpler and clearer representation.

7.3 Summary
We have compared DDLA with what we judge to be the most similar related research. This

has shown links between DDLA and other work in the field, but also large differences.
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Reasoning in DDLA has some similarities with reasoning in Jamnik's DIAMOND system. Both

use a 'dynamic' style of reasoning (i.e. reasoning by drawing/transforming diagrams, rather

than reasoning from pre-drawn diagrams), and work with specific cases whilst proving

general theorems. However, because of the deep differences in their domains (DIAMOND

works in a discrete domain, whilst DDLA operates in a continuous domain), the reasoning

style is very different.

The representation we have developed for logical concepts (such as quantifiers) has novel

aspects, but comparisons are possible with other systems. Of particular interest is Howse et

al's work on constraint/spider diagrams, which covers quantifiers [11] (and is perhaps

currently the only 'live' project in the field that does so). Constraint diagrams are a powerful

diagrammatic representation system. Our comparison shows that the two systems (DDLA &

spider diagrams) are quite different. We can trace many of these differences to differences

in the domain and goals of each system. Hence this comparison sheds light on some of the

principles underlying certain design choices. 

We conclude that none of these systems can be considered to be 'rivals'. Whilst ideas from

one area can be applied to another, none of the three systems considered here are well-suited

to the others' fields. It seems that diagrammatic systems are inherently prone towards some

degree of specialisation, and it is therefore unlikely that a universally superior representation

system exists.
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8 Future work

Future work can be divided into extensions to the � � �� � � � �� system (i.e. improvements to

usability), and extensions to DDLA (i.e. increasing the range and power of the logic). There

may also be more work that can be done with the system as it is, since we have not

definitively explored its limits.

There are several ways in which � � �� � � � �� could potentially be improved (including

automated drawing, automated reasoning and interface improvements). Some of these are

straightforward extensions, some developments requiring theoretical work. Future work here

also includes investigating how the different features of the system are used in practice, and

what effect different settings/configurations have on users. The most important line of

further work is in extending the range of the logic. We look at several ways in which DDLA

could be extended. There are many concepts of interest in the domain that we have not

covered in this project. These include connected and disconnected sets, differentiable and

integrable functions, metrics and contraction mappings. Some of these could be covered

within the existing framework by designing suitable representations and adding definitions.

However for some we would need to extend the reasoning mechanism. Perhaps the key

extension is sequence reasoning, which would greatly extend the power of the logic.

In extending DDLA, we have to be careful not to make it too complex. Any amount of

information can be represented and manipulated in a diagram, but we risk losing the

intuitive appeal of diagrammatic reasoning. There seems little point in developing a

diagrammatic logic as powerful as sentential logic if it is also as hard to follow. As

described in §6.4.4, further studies of how the logic is used are also important.
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8.1 Improving � � � � � � � ��

8.1.1 Improving the user interface 

User interfaces take a lot of work to perfect, and no doubt there are many ways in which the

current interface could be improved. One clear improvement would be the addition of

context sensitive help. It would also be beneficial to provide informative feedback when an

action fails (e.g. “Quantifier error: x is not an arbitrary point” ). This involves guessing what

the user wanted (i.e. which matching the user had in mind when attempting to apply a rule).

This could be done by ranking flawed matchings using a measure for 'goodness of fit' based

on the number and type of broken constraints. Calculating such feedback could be

computationally expensive (as we could not prune the matching search space as

aggressively), but would only need to be done on demand. Another possible improvement

would be to allow users to draw diagram objects in a freehand manner (with the mouse or a

graphics tablet), with the system automatically recognising the objects drawn, finding the

appropriate rule for creating them, and testing the validity of such a proof step. This would

be technically ambitious, but not theoretically difficult.

8.1.2 Representation

Most obviously, the standard of the diagram-drawing routines could be improved.

Embedding a third-party diagram viewer would be the most desirable option here, if a

suitable one could be found.

The current display methods are biased towards displaying diagrams without much algebra.

A more flexible display method that supports more mixing of algebra and diagrams is

desirable. A fairly simple adaptation would be to make the representation for the current

proof state (currently 3 window panes: a large diagram, a list of algebraic statements & a

small overview diagram for zooming) consist of a flexible number of resizeable window

panes. This would also allow conjunctions of diagrams, which might be useful in complex

proofs.

It would be interesting to investigate the use of context sensitive representations for rules.

For example, rules such as add- a- set could be drawn with 1D sets when working with 1D

spaces.
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Changeable implicit relation rules

As noted in §4.4.5, the set of implicit relation rules used in DDLA is not rigidly determined,

but is instead a design choice tailored to the domain. � � �� � � � �� could allow users to change

which relations are represented implicitly.69 Potentially, the computer system could decide

based on context which implicit relation rules to use, but this could easily be confusing to

users.

8.1.3 Full DDLA compliance

As noted in §6.3.2, Dr.Doodle does not completely implement DDLA. It could be extended

to do so, which would allow us to investigate how useful

flexible-matching/condition-updating is in practice. This requires more coding, but no

significant unresolved technical issues.

8.1.4 Automated drawing

At present, whilst the system calculates how to draw those objects whose parameters are

fixed (e.g. y where y=f(x) and f, x are already drawn), all drawing choices are made by the

user. This is probably the behaviour expected by the user, but it is occasionally intrusive.

For example, when performing a case split, it is up to the user to modify the diagram to give

new cases, which can be confusing for novice users.70 Also, automated diagram drawing is

necessary if we wish to investigate automated diagrammatic reasoning.

There are two ways in which we might increase the degree of automation in the drawing

process. One is to develop heuristics for drawing 'good' diagrams. Diagrams should be as

accurate as possible (so that as many of the relations are true as possible, noting that this

may not be all relations), whilst avoiding unintentional implicit relations, and being

'sensible' (i.e. clear to the user). This is a hard and open-ended problem. 

I suggest the following 'proto-algorithm'71:

	 The drawing algorithm should work forward, with all drawing choices about an object

being made at the point where that object is first drawn. This should greatly reduce the

69 Note that implicit relations must be testable in a decidable fashion, e.g. relations such as 'x<y' are
suitable, but not 'open(X)'.

70 The most recent version of � � �� � � � �� does attempt to automate case-split redrawing for some
simple cases.

71 'proto-algorithm' is used here as shorthand for 'extensive research programme'.
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complexity of the problem, as typically a reasoning step will introduce at most a couple

of new objects. It has the drawback that initial choices may turn out to be bad for later

reasoning. Also, handling backward reasoning would be problematic, as initial drawing

choices might turn out to be inaccurate. Thus an option to optimise representations for an

entire reasoning program would be desirable. This would be an expensive procedure, so

only to be applied when requested.

	 If we describe object outlines using polynomials, the relational constraints on new

objects can be converted into polynomial constraints (e.g. “x� Br(y)” would become

“(x-y)2-r2<0”). Techniques such as Cylindrical Algebraic Decomposition (CAD)

technique could then be used to find ranges of solutions for the new parameters (note that

CAD can easily become intractable) [52].

	 Solutions would then be tested for the presence of unintentional implicit relations. If such

a relation is discovered, its negation can be added as an additional drawing constraint.

	 If no solutions exist, constraints would be incrementally removed. When possible, this

would be done according to a hierarchy of relations (e.g. it is more important to represent

subset relations accurately than order relations). Such a hierarchy should fit with user

expectations. This should be investigated empirically, but will probably match the

method used for representing a relation (i.e. implicit relations should be represented

accurately in preference to explicit graphical relations, which in turn should be preferred

to explicit algebraic relations).

	 Aesthetic factors could be captured as functions that 'score' a diagram (e.g. objects

should have large area, which we could capture by awarding a score based on the

average/minimum area of the diagram objects). Given ranges of acceptable parameters,

values would then be chosen to optimise these aesthetic factors.

The other option – which would be easier, and possibly interesting in its own right – is to

pick random parameters when creating universally quantified objects. This would fit in with

the 'game semantics' approach to quantifiers, whereby universally quantified objects are

picked by an 'enemy' whose choices can be troublesome. Existentially quantified objects

would still be drawn by the user.

Note that it is far from clear that fully automated drawing is desirable in general (e.g. it

might aid understanding for the user to be in charge of drawing), although it would certainly

be interesting to investigate. 
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8.1.5 Automated reasoning

An automatic theorem proving mode is desirable, both for pragmatic applications (e.g. so

that users can skip 'uninteresting' reasoning steps, or in teaching systems for supplying 'proof

hints' when students get stuck) and out of academic interest. Automated reasoning in this

area is difficult, perhaps largely due to quantifier issues. However there is a fair amount of

existing work (e.g. the Theorema system, which utilises a range of techniques [6]). It is not

clear at present how hard it would be to adapt such work to our framework. Some

applications of automated reasoning also require automated drawing routines (c.f. §8.1.4).

8.2 Extending DDLA

8.2.1 Extending the representation scheme

There are several interesting lines in which the representation scheme could be extended.

These include:

	 As discussed in §7.2.2, the representation for disjunction could be improved by adding

specialised disjunction representations such as spiders.

	 A representation for zooming (we envisage that this would be purely 'cosmetic' – i.e. an

aid to explaining concepts such as differentiation, but not playing any active role in the

reasoning).

	 For simplicity, DDLA specifies that object labels are unique meaningless tokens.

However, a more sophisticated approach is both possible and desirable. � � �� � � � ��

already implements the use of meaningful labels for structured objects (e.g. 'A� B'; c.f.

§6.3.2). More ambitiously, we could also use diagrammatic labels – that is, labels which

are mini diagrams. An example of this is shown in Figure 8.1. The graphic objects x' (the

red point) and Be(x') appear unlabelled. Be(x') is then referenced algebraically via a

mini-diagram, rather than by label. Such references are clear – provided the mini-diagram

has a unique (and obvious) match within the main diagram.
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	 More interactivity in representations. (c.f. §5.1.1 which highlights some limitations of

DDLA that could potentially be solved with interactive representations). For example,

the ability to 'trace through' a diagram, navigating along relations and calling up detailed

information on selected objects and relations. More ambitiously, it might be interesting

to allow users to vary parameters in rule antecedents, with the system automatically

varying the consequent to match. For example, in the “ If f is continuous...” rule (c.f.

Figure 4.4), the user might vary the size of e, and the system would have to alter d

accordingly. This would give a possibly more appealing demonstration of how the

different elements of the rule are linked. This idea is very similar to the variations

allowed in Cinderella, although potentially harder to implement due to the presence of

existential statements. 

	 Animated consequents for concepts such as uniform continuity: 

f uniformly continuous, e>0 �  $d" x.f(Bd(x))� Be(f(x))

As stated in §6.2.2, this can already be represented in DDLA by breaking it into two

rules. However Figure 8.2 gives an alternative representation using one rule and an

animated consequent.

	 Projection representations for 3D objects (e.g. functions from � 2® � ).

	 Representing error margins, which we will demonstrate in §8.2.6. 
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Note that although the representation scheme can potentially be extended to cover many

more objects and concepts, there are limits to the extensions possible. Many objects are

simply not suited to two dimensional representation (e.g. Klein bottles72, � n). Hence a

complete treatment of analysis is unlikely to be possible without substantial use of algebra.

8.2.2 Using outside reasoning systems

Currently all reasoning in the system must be done using redraw rules. It could improve both

ease-of-use and range to allow the incorporation of special 'black box' inference procedures,

which can be called for certain classes of sub-problems (e.g. for simplifying arithmetic

statements). Such operations would be represented by example transformations. This would

be in keeping with the redraw rule representation, but merely illustrative rather than

constituting a valid definition.

8.2.3 More accuracy

In counter-example reasoning, we have looked at using diagrams to guarantee the existence

of a corresponding model. Currently though this can only be used with diagrams restricted to

the { t ype, subt ype, � , � , cent r e, r adi us} relations. Size ('>' relations) is also suitable for

such a treatment. Implicit equational relations and relations of a 'functional nature' (e.g. a=b

or y=f(x)) are not suitable. This is because of the possibility of exploiting the tiny, but

potentially important, differences between objects which are indistinguishable when drawn

due to vagueness of representation. However negated versions of such relations could be

included, since they are not precise (e.g. if a, b are drawn such that a� b, then this inequality

will hold for all objects a'»a, b'»b). To include a relation r(x,y), it is necessary to prove

either:

i mpl i ci t (r(x,y)) �  " D� � -1(� ), D� r(x,y)  

(hence vagueness of representation does not matter, as the relation is true for all

possibilities. This is the case for “ � ”  for example, but not “=” .)

or $ a privileged diagram D� � -1(� ) such that " i mpl i ci t (r'(x,y)), D� r'(x,y)

(this is the case for the cent r e and r adi us relations.)

72 However whilst a Klein bottle can only be drawn in 4D, they do have a nice 2D representation
which supports a fair amount of reasoning about them. This suggests that with sufficient ingenuity,
diagrammatic reasoning might usefully be applied to higher-dimensional objects (i.e. objects that
cannot be embedded in � 3).
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A more powerful approach might be to use user-drawn diagrams as a heuristic for generating

examples whose accuracy is then checked 'behind-the-scenes'. However, the diagrammatic

proof seen by the user would then be only an informal proof, as it would not constitute a

sound proof without these behind-the-scenes accuracy checks.

8.2.4 Not rules

Defining a property in DDLA does not define its negation. That is, given a rule defining a

property (e.g. 'open'), we do not automatically get a a rule defining the negation of that

property (e.g. 'not open'). In algebra, moving from a rule to its negation is a simple

operation, however for diagrams it is more difficult. Having calculated the algebraic

negation, fresh drawings must be created to represent the new rule. Hence automatic

negation is dependent on solving the problem of automated drawing. A temporary solution

would be to use algebraic representations when the automatic generation of a negation is

required.

8.2.5 Sequences

The lack of a mechanism for reasoning about sequences is probably the largest limitation to

DDLA's range. In this project we have used a simplistic treatment of sequences as basic

objects. This allows us to define convergence, and to prove a couple of general theorems.

However there are a great many theorems which cannot be tackled without a way of

defining and reasoning about specific sequences. We would like a method that is as visual as

possible, and fits in with the representation and reasoning style of DDLA. We propose the

following method based on defining sequences by analysing the construction of a few

example points. 

A sequence can be defined by a redraw rule R:D � D' where D contains the nth object(s)73,

and D' contains the (n+1)th object(s) in the sequence. Such an R can be used to generate the

sequence one point at a time. It can also be used to reason inductively about properties of

the sequence. 

Such sequence-generation rules can be created by example. If a user constructs the first few

points of the sequence, the reasoning program produced by this will then contain example

73 Often several objects will be created at each step. This is because a sequence of points may also
require sequences of 'supporting objects' used in the construction.
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generation steps which can be used to define the rule R. R must then be checked to make

sure that it does define a sequence (i.e. that it can be applied indefinitely to generate an

infinite chain of points). This check is straightforward: if D'� D under the matching given by

(n+1) ® n, then R can be replied indefinitely. This definition method also covers

'conditional sequences' (i.e. where there is a case split in creating the (n+1)th point), for

example the sequences used in repeated bisection, and sequences of sets and functions as

well as points.

   

We can then reason about properties of such sequences in at least two ways.

1) Transitive properties such as xn+1>xn can be extended throughout the sequence: e.g. if

xn+1>xn, then m>n �  xm>xn. 

2) By induction, we can conclude that a relation which is true for xN (any N) and preserved

by R will be true for all xn, n>N. This requires making proof-by-induction available. This

could be done either as an animated rule or as a meta-rule (which would allow us to

develop a specialised representation – probably desirable for a concept as important and

confusing as induction).

In Appendix B, we illustrate this method with an example proof.

8.2.6 Differentiation

For functions from � ® � , there is an obvious graphical representation for the derivative as

the gradient of the function's graph. Defining the property of being differentiable is trickier

though. The standard definition is:

f is differentiable at x with derivative f ' if 

f(x+h) = f(x) + h.f '  + e(h)|h|,  where e(h)® 0 as h® 0 

This is equivalent to:

f is differentiable at x with derivative f ' if "  e >0 

$ d>0 such that h<d �   |f(x+h) -f(x) -h.f ' | / h < e

This is now in a form which we can capture using the current framework, since it is

equivalent to saying that the function g(y) = | f(y) -f(x) -(y-x).f ' | / (y-x) is continuous at x.

However this is not an intuitive definition. A more appealing diagrammatic definition is

possible (Figure 8.4) but requires an extension to our representation scheme, which we now

present.
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Error margins

We can think of f(x) + h.f ' as an approximation function for f(x+h), and add the concept of

acceptable error, which we represent by shading a region of the graph around the

approximation function. This shaded region is the error margin. Typically, an approximation

will have a range within which it is valid, and this determines the width of the shaded

region. Plotting the true function within the shaded region represents (implicitly) that the

approximation is within acceptable error. Figure 8.3 shows an example of an error margin,

with acceptable error e (in this case, the approximation is not valid, as the true function

breaks the error margin).

For differentiability, the acceptable error between f(x+h) and f(x)+h.f ' is h.e. This allows us

to define differentiability as shown in Figure 8.4.

We can also define the property of continuity for 1D functions in this way, as shown in

Figure 8.5. This then gives a visual demonstration of the difference between continuity and

differentiability, from which it is clear that f differentiable � f continuous (indeed,

contrasting the diagrammatic definitions is almost a proof).

208

Figure 8.3. An approximation function with a

constant error margin.



Note that when working algebraically on questions of differentiability, one often shifts the

origin such that x=f(x)=0 to make the statements simpler. With a diagrammatic
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Figure 8.4. Defining differentiability using error margins.

Figure 8.5. Defining continuity

using error margins.



representation, people naturally shift their focus to (x,f(x)). We could say either that an

origin shift is unnecessary, or that it is performed implicitly.

8.2.7 Integration

As with differentiation, there is an obvious graphical representation for the integral of a

function from � ® � (as the area under the function's graph), but it is less clear how to

define the property of being integrable. If we stick to the usual definition (the Riemann

integral, using upper and lower sums), then one possible representation would be based on

comparing the total area between the upper and lower sums to an arbitrary e, as shown in

Figure 8.6. This ties in nicely with the error-margin representation suggested for

differentiability and continuity in §8.2.6. A simple and intuitive proof is then possible for

the important theorem “f:� ® � continuous, X� � bounded � f integrable over X” (see

Figure 8.7).

8.3 Summary
This chapter has set out several ways in which this project can be extended. 
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Figure 8.6. Diagrammatic definition for integrability.



One straightforward line of work is to extend and improve the � � �� � � � �� system. We have

identified various possible improvements to usability, including automated drawing,

automated reasoning and interface improvements. Future work here also includes

investigating how the different features of the system are used in practice, and what effect

different settings/configurations have on users.

Perhaps more important, though, is the question of how to extend DDLA. We have proposed

several ways of increasing the range and power of the logic. These include a mechanism for

defining sequences, and a new representational device – error margins – that seems to give

visually appealing representations for several key concepts. Developing these ideas further

should allow us to produce intuitive proofs for an ever wider range of theorems.
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Figure 8.7. Diagrammatic proof that f continuous, X closed & bounded �  f integrable on X.
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9 Conclusion

This project has looked at using diagrammatic reasoning to prove mathematical theorems.

Behind this work lie two beliefs: that diagrammatic reasoning is more intuitive for some

domains, and that if theorem-provers are to be more than black boxes, then we must make

computers reason like people. The alternative – that people should reason like computers –

is unrealistic, however attractive it may seem in theory. Of necessity, we have focused on a

specific domain (mathematical analysis). This is perhaps a more challenging domain than

has been tackled in diagrammatic reasoning to date. The aims of the project were to develop

a way of reasoning with diagrams suitable for doing analysis proofs, and demonstrate that

this has advantages over conventional methods. Whilst this work is not yet complete, we

have made considerable progress, showing that these aims are both possible and desirable.

9.1 Aims
Since Hilbert's pioneering work, axiomatic algebraic approaches have taken over

mathematics. Whilst this revolution has delivered many benefits, it has also led to dry

formalisations that lack intuitive appeal. Algebraic definitions can be opaque and

meaningless when first met, and even quite simple reasoning steps can become difficult to

follow when couched in dry symbolic terms. The effect is to make geometric subjects much

more daunting to newcomers than is necessary.

This problem is even worse in computer systems. Modern theorem provers are often hard to

use and their proofs unreadable, even for experts. We believe this severely limits their usage

in mathematics. One aspect which they generally lack is the ability to support visualisation

of ideas and concepts. Yet it is with computers that the future of diagrammatic reasoning

lies, and computers could revolutionise visual reasoning. Drawing programs can make it

possible for everyone to create visualisations quickly and accurately. Also, using computers

opens up exciting new possibilities for diagrammatic reasoning - such as animated diagrams

and interactive diagrams.
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However, as we explored in chapter 3, there are serious obstacles involved in formalising

diagrammatic reasoning. These include a certain unavoidable roughness in the

representation, optical illusions, and ambiguous drawings. Also, several straightforward

logical ideas are hard to represent diagrammatically (e.g. disjunction, negation, proof by

contradiction and handling quantifiers), and generalisation is problematic (which is linked to

specifying exactly what a diagram does and does not represent). Plus, we must be careful to

keep design issues in mind. Otherwise it is possible to create logics that are actually less

intuitive than algebraic approaches. This range of issues makes formalising diagrammatic

reasoning an interesting challenge.

   

We focused on a domain that has not been tackled before, that of Euclidean-space analysis.

Euclidean plane geometry has always been taught using diagrammatic reasoning. This

project has looked at using diagrams to prove properties in a more abstract geometry. We

have tackled a subset of Euclidean space analysis. This is algebraically a hard domain, and

even great mathematicians such as Cauchy have made mistakes in this subject.

9.2 Our work

9.2.1 Exploration

The first stage of the project was exploratory. Unlike the DIAMOND project, an established

body of informal representations and proofs was not available. By tackling a range of

analysis theorems, we have built up a body of new diagrammatic representations and proofs.

These then guided our formalisation, and provided content for the final system.

9.2.2 Formalisation

The framework we developed is:

	 Wholly diagrammatic – rules and proofs are both presented diagrammatically.

	 ...but heterogeneous – diagrams mix visual and sentential elements.

	 and dynamic – both reasoning and representation involve the drawing process, rather

than interpreting a finished diagram.

	 Its inference mechanisms work at a syntactic level.

	 ...but can leverage semantic information from the representations. This is used to

simplify counter-example proofs, and to formally implement a version of Lakatos's

214



method of strategic withdrawal whereby a conjecture can be weakened as necessary

whilst trying to prove it.

Using rules for implicit relations, we can specify which facts can be inferred from the

diagram, and implicit inferences allow some proof steps to be skipped. Combining this with

explicit relations that can act as 'algebraic overrides', gives us the flexibility to alter implicit

relations where necessary. This provides a way of formalising reasoning from the diagram

which allows for intuitive understanding with reasonable range. The wholly diagrammatic

nature of the reasoning – with even the rules defined  by diagrams – is rare.

Within this framework, we then built a representation scheme for analysis concepts. We

have presented designs for objects and relations in the domain, with some discussion of their

strengths and weaknesses. The design of these representations was guided by the aim of

combining intuition, representational range and reasoning power. However in places,

conflicts between these different design goals have led to compromises.

This framework was then analysed for soundness. This involved specifying a way of

converting diagrams into algebra, so that our diagrammatic rules and proofs can be

compared with the standard definitions of the domain. We have shown that our logic is

sound - subject to a meta-assumption of reasonable clarity in the diagrams. This assumption

is unavoidable in most diagrammatic reasoning. However we can hope that by analysing the

drawing and reading of diagrams, we may develop theories allowing us to specify when a

diagram is clear.

9.2.3 Implementation

An important part of this project has been the building of an interactive theorem prover

('� � �� � � � �� ') to implement this logic. This served several goals. Firstly, the development of

DDLA and � � �� � � � �� went hand-in-hand to a certain extent, with work on constructing

� � �� � � � �� helping to guide the formalisation of DDLA. The finished system serves as a

proof of concept. It demonstrates that our logic works, and does not contain any 'magic

steps', which could easily remain hidden in a paper theory. Moreover, it is also a useful tool

for testing claims regarding the pedagogic value of diagrammatic reasoning in this domain.

215



It has allowed us to perform experiments and hence an empirical evaluation. Finally, it

serves as a base upon which a real-world teaching aid could be built.

9.3 Assessment
We evaluated this project against the hypothesis:

“Diagrammatic proofs are possible for analysis problems, and may be easier

(in some sense) than algebraic reasoning”

Our conclusions supported this hypothesis. The experiments using � � �� � � � �� to teach

undergraduates were particularly promising. Students using diagrammatic reasoning

consistently out-performed those using algebra. This shows that the ideas presented here

have genuine pragmatic value.

Our evaluation was limited in scope however. We only examined proof production.

Communication and recall, both of proofs and concepts, are also of interest. Nor have we

examined why diagrammatic reasoning is better, or which aspects of our logic are

responsible for the improvement in performance. Ultimately we would like to have an

empirically validated theory for when diagrams are better than algebra – and what sort of

diagrams are best.

Comparing our work here with related research has shown strong links, but also large

differences. Whilst ideas from one area can be fruitfully applied elsewhere, none of the

systems we looked at could be considered 'rivals'. Such comparisons suggest that

diagrammatic systems are inherently specialised, either for a domain or a type of problem.

We should therefore expect a plethora of computerised diagrammatic reasoning systems to

emerge, rather than for development to converge on one reasoning system. There are

theories that attempt to categorise the different types of diagram and diagram logic, often

based on cognitive ideas. Arguably though, it is too early to do so: we must first see what

becomes of current projects, before we can say what aspects of a diagram logic work and

why.
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9.4 Where next?

9.4.1 Extensions to DDLA

In §8 we looked at how this work could be extended. This section showed that there is the

potential to do much more with diagrammatic reasoning in this domain than has been done

here. This project constitutes a promising start rather than a finished body of work. However

I see no reason why our hybrid diagrammatic-algebraic logic cannot be extended to cover

the whole of analysis.

9.4.2 Other applications

Any project, however focused, both draws ideas from other fields, and offers ideas back in

return. We have used animation to give meaningful quantifier representations. I suspect that

other applications of animation are possible: although unrelated to our present work,

animated diagrams may also be useful in representing and reasoning about temporal

relations. There is an obvious attraction in using time to represent itself.74

Ideas from this project could also be applied in other areas. One possible line of work is in

interactive program generation. As the term 'reasoning-program' suggests, a proof in our

logic is in fact a program for transforming diagrams (complete with conditions on when it is

valid), and animated pre-conditions can be thought of as program specifications (with

flexible links being unwritten bits). If we work with program objects (e.g. lists, strings, class

instances) instead of graphic objects, this becomes a programming method. Hence our work

suggests a new approach to the important-but-difficult problem of

programming-by-example. We explore this idea further in [59].

9.5 Closing thoughts
Although once neglected, the field of diagrammatic reasoning is now attracting serious

attention. Potentially, it could dramatically improve the usability of many computer systems,

including theorem provers and programming environments. There is a lot of work to be done

though, and a lot of basic questions that are still open. Euclidean plane geometry has always

been taught using diagrammatic reasoning. This project has shown that diagrammatic

74 This would probably not be suitable for domains which involve precise time calculations, as these
would be hard to judge in an animation. For qualitative reasoning though, or as part of a mixed
system, it seems an interesting line for future research.
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reasoning can also be used in a more abstract geometry. Hopefully, this work will serve as a

foundation for a visual formalisation of analysis.

By drawing on diagrams to visualise concepts, we hope that more intuitive formalisations of

geometry are possible than at present: logics that give rigorous proofs, yet are nevertheless

suitable for teaching with and supporting thinking. Eventually we envisage that formal

proofs, produced or verified by computers, will be as readable as human proofs. At that

point, theorem provers will truly become 'assistant mathematicians'.
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10 Glossary of Terms

This glossary is provided as a useful reference for the technical sections of chapters 4 and 5.

The definitions given here are short aide-memoires. They neither reproduce nor replace

those of chapters 4 and 5, or make sense without the explanations given in those chapters.

10.1 Notational conventions
	 Upper case letters (sometimes with subscripts or primes) are used for diagrams, redraw

rules and (within the context of a specific diagram) sets.

	 Underlined upper case letters are used for reasoning programs.

	 In the context of reasoning programs, let D - D' denote that D' is a child node of D.

	 Lower case letters (sometimes with subscripts or primes) are used for graphic objects.

	 Relations are written in the form r(x1,x2,...,xn) where r is the relation name and xi are

object names or constants. Relations may have any arity. However, since binary relations

are the most common, we will allow r(x,y) to represent an arbitrary relation.

	 �  has its standard logical meaning of “ implies” .

	 �  means “matches”  e.g. “A �  B”  is used for A matches B

	 � m� means “matches with mapping m”. Mapping functions are overloaded so that the

same name designates several different functions depending on the type of input.

	 � � means “ redraws to”  e.g. “D �  D' ”  is used for “D redraws to D' ”

	 R�  means “ redraws using rule R”

10.2 Terms defined in this project
The following list covers the terms we have defined in this project. Terms are listed in

alphabetical order. The example(s) column shows typical statements that might be made

involving these terms. The defn. column gives page number references to the sections(s)

where the term is defined. Where multiple references are given, early references will

typically be informal definitions.
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Term Example(s) Quick definition Defn.

Animated rule R = D0...Dn �  D' An animated rule has a chain of

diagrams as its pre-condition. The

diagram chains are used to represent

and reason about quantifiers. The

chains use two different types of

link, strict and flexible,

corresponding to universal and

existential quantification.

p. 74, 91

Branch rule R = D0� D1...Dn Redraw rule that introduces a case

split by branching the reasoning

program.

p. 71, 91

Diagram D=(objects,relations),

D1...Dn

A set of graphic objects and a bag

of observed relations.

p. 74, 91

Domain Euclidean space analysis.

Drawing

function �  

� (D) A function mapping idealised

objects onto bitmaps, and by

extension, creating physical

diagrams from idealised diagrams.

p. 126, 131

Explicit relation open(X) A relation that requires the diagram

objects to be annotated (graphically

or algebraically) in order to be

represented.

p. 85

Flexible link D1 -f- D2 Used in animated rules to indicate

that the transition introduces �

objects.

p. 74, 91

Graphic Object A labelled domain object. p. 84

Idealised

diagram

D A diagram of geometric objects (as

opposed to physical objects).

Idealised diagrams are usually

synonymous with diagrams.

p. 126
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Term Example(s) Quick definition Defn.

Idealised object x� � , x = 4.32156 A geometric object (as opposed to

the drawing of a geometric object,

which is a physical object).

Idealised objects are synonymous

with graphic objects.

p. 126

Interpretation

function �

� (R)=“" x.p(x)� q(x)” A function mapping from

(idealised) diagrams to algebra.

p. 132

Implicit

inference rule

A� B, B� C �  A� C Rule capturing a 'free ride'; an

inference that happens simply by

drawing the diagram objects.

p. 86

Implicit relation (A� B) A relation that is represented simply

by drawing the diagram objects.

p. 85

Label x, A, f A token associated with a graphic

object. Labels must be unique

within the surrounding reasoning

program.

p. 84

Matching T� m� D A matching is a mapping from the

objects of one diagram to another,

such that the relations of the source

diagram also hold in the target

diagram. Matchings can be

many-to-one, and are not generally

symmetric.

p. 88,94

Model � Two uses: 

1) An (assumed) model for

euclidean space analysis which

includes � 2 and all the drawable

objects.

2) A subset of this model containing

the objects used in an idealised

diagram.

p. 126, 130
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Term Example(s) Quick definition Defn.

Observed

relation

r(x,y)� r el at i ons(D) A relation that is known to be true

in this diagram. Observed relations

can be either implicit or explicit.

p. 85

Physical

diagram

� �� �� (D)� A diagram of physical objects,

created from an idealised diagram.

p. 126

Physical objects The physical drawing of a

geometric object.

p. 126

Redraw rule R = D� D' A visual equivalent to rewrite rules.

A redraw rule has a diagrammatic

antecedent (possibly animated) and

consequent (possibly branching).

These define an example drawing

operation. Applying the rule to a

matching diagram performs an

equivalent drawing operation on the

target diagram.

p. 69, 89

Simple rule R = D� D' A non-animated non-branching

redraw rule.

p. 90

Specific object speci f i c(X) A specific object is both

existentially quantified and fully

observed, which means that any

relation which can be seen to be

true for that object, can be used in

the reasoning. This allows some

shortcuts in a counter-example

proof.

p. 98

Strict link D1 -s- D2 Used in animated rules to indicate

that the transition is exact,

introducing "  objects.

p. 74, 91

Unknown unknown(A� B) Annotation specifying that a

relation appearing in the diagram is

accidental, and should be ignored.

p. 86
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Appendix A: Rule-set for DDLA

12.1 Appendix overview

This appendix presents the rule-set used in DDLA/� � �� � � � �� , including the implicit

inference rules. Rules are grouped roughly according to the objects and relations involved.

This appendix also gives soundness proofs for these rules, based on the framework of

chapter 5. In most cases, the rules are visual interpretations of conventional definitions, and

hence soundness follows trivially from Theorem 17 (c.f. §5.2.2). For such rules, we simply

give the algebraic interpretation of the rule. 

The redraw rules are mostly presented using screen-shots taken from � � .� � � � ��

(re-arranged slightly to fit the layout used in the thesis). Therefore, as described in §6.3.2,

they show some minor discrepancies from the DDLA specification set out in chapter 4. In a

few rules, the graphical elements play very little role. In these cases, the rule is presented

algebraically. Implicit inference rules are also presented algebraically.

This rule-set is not complete. It was extended as necessary, and there are rules which are

missing because they were not used in any of our proofs. Where other rules are used in our

proofs, these are either:

1) Lemmas, provable with this rule-set.

2) Rules creating universally quantified objects. We do not list them here because the

necessary rules are embedded in the animated rules, and can be automatically (and very

easily) extracted from these (c.f. Definition 4.3.3.3, §4.3.3).  
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12.2 Rule-set with soundness proofs

12.2.1 Objects

Sets

Rule 2. Subset – apply (an implicit inference rule): “X� Y, Y� Z  �   X� Z”

Rule 3. Set equality (an implicit inference rule): “X� Y, Y� X  �   X=Y”
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Rule 4. Complement set

- definition 1.

Rule 5. Complement sets exist.

Rule 1. Subset - recognise.



Rule 8. Image set – recognise (an implicit inference rule): x� X, y=f(x)  �   y� f(X)

Rule 11. Inverse set – apply (an implicit inference rule): x� X, X=f -1(Y)  �   f(x)� f(Y)

Rule 12. Inverse set – recognise (an implicit inference rule): f(x)� Y  �   x� f -1(Y)
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Rule 6. Complement set - definition 2.

Rule 10. Image sets exist. Rule 9. Inverse sets exist.

Rule 7. Image set - apply.



Conversions and soundness proofs

Rule 1 (Subset - recognise.): Soundness proof

Let Rule 1 = R:T1-s-T2-f-T3 � T' 

Suppose R is not sound.

�   �  reasoning trees D, D' in EDDLA such that D0 is consistent, D was drawn

from D0 using sound rules D, D R� D', but D' is inconsistent.

Let T� m� D. Without loss of generality, let the object labels in m(T)� D be the

same as those in T and assume y' is not used as an object label in D.
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Rule 15. Intersection

sets exist.

Rule 16. Intersection

set definition.
Rule 17. Empty set.

Rule 13. Union set definition.
Rule 14. Union sets exist.



Let D=t ar get (R,D) and D' = R(D).

D consistent, D' inconsistent �  D consistent, D' inconsistent (since all other

branches of D, if any, are unchanged by the application of R and must therefore

have been inconsistent already).

D R� D' �  changes(D,D')={ � ,{ y} ,{ Y� X} ,� }  (that is, the universally quantified

point y is deleted, and the relation Y� X is added to diagram D')

D drawn using sound rules  �   D is consistent. Hence the statement Y� X must

be inconsistent with D.

D consistent, hence there exist models for D (note: if D is also accurate, then

obj ect s(D) is a model for D). Let M(D) be a model for D with the same object

labels. Y� X inconsistent with D �  � y'� M(D) such that y'� Y and not (y'� X).

Let A be the reasoning program D[y'/y]. But then by Lemma 6, the drawing of A

is verified by D in the same way as for D. Hence t ar get (R,A) has y'� X. 

D sound �  A is consistent, so y'� X. 

This is a contradiction, hence R is sound as required.

Rule 2 and Rule 3 are standard definitions.

� (Rule 5) = “eucl i dean-space(X), set (A), A� X  �   �  'Ac' . set ('Ac'), 'Ac'� X, 'Ac'=Ac”

True from the closure of subsets under complementation.

� (Rule 4) = “eucl i dean-space(X), set (Y), set ('Yc'), 'Yc'=Yc, Y� X, Yc� X, x� Y, x� Yc �

f al se”

True from the standard definition for Yc: x� Yc  �   not (x� Y)

� (Rule 6) = “eucl i dean-space(X), set (Y), set ('Yc'), 'Yc'=Yc, Y� X, Yc� X, poi nt (x), x� X �

x� Yc  or   x� Y”

True from Y� Yc = X.

� (Rule 7) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X), r ange

(f,Y), set (A), A� Y, set (Z), Z� X, A=f(Z), poi nt (y), y� A  �   �  x . poi nt (x), x� X, f(x)=y”  

Rule 8: Trivial.

� (Rule 10) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X),

r ange(f,Y), set (A), A� X  �   �  'f(A)' . set ('f(A)'), 'f(A)'� Y, 'f(A)'=f(A)”

True since { y : � x� X, f(x)=y}  is a valid set definition.
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� (Rule 9) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X), r ange

(f,Y), set (A), A� Y  �   �  'f -1(A)' . set ('f -1(A)'), 'f -1(A)'� X, 'f -1(A)'=f -1(A)”

True since { x : � y� A, f(x)=y}  is a valid set definition.

Rule 11 and Rule 12: Trivial.

� (Rule 14) = “set (X), set (Y) �   �  'X� Y' . set ('X� Y'), 'X� Y' = X� Y”

True since { x : x� X  or  x� Y}  is a valid set definition.

� (Rule 13) = “set (X), set (Y), set ('X� Y'), 'X� Y'=X� Y, poi nt (x), x� 'X� Y'  �   x� X  or  x�

Y”

� (Rule 15) = “set (X), set (Y) �   �  'X� Y' . set ('X� Y'), 'X� Y'=X� Y”

True since { x : x� X, x� Y}  is a valid set definition.

� (Rule 16) = “set (X), set (Y), set ('X� Y'), 'X� Y'=X� Y, poi nt (x), x� X, x� Y  �   x� 'X� Y'”

� (Rule 17) = “ � x, x� � � � � f al se”

Balls
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Rule 21. Ball -

recognise.

Rule 19. Ball - recognise not.
Rule 18. Ball - exists.

Rule 20. Ball -

apply.



Conversions and soundness proofs

� (Rule 18) = “eucl i dean-space(X), poi nt (x), x� X, l i ne(r)  �  �  B,L . l i ne(L), L=r, bal l

(B), cent r e(B,x), r adi us(B,L), B� X, x� B”

True, since bal l (B), cent r e(B,x), r adi us(B,L) � B={x'� X : |x-x'|<L} , which is a valid

subset of X, and, x� B is trivial.

� (Rule 20) = “poi nt (x), poi nt (y), l i ne(d), d=xy, l i ne(r), bal l (B), cent r e(B,x), r adi us

(B,r), x� B, y� B �   r>d”

� (Rule 21) = “poi nt (x), poi nt (y), l i ne(d), d=xy, l i ne(r), bal l (B), cent r e(B,x), r adi us

(B,r), x� B, r>d  �   y� B”

� (Rule 19) = “poi nt (x), poi nt (y), l i ne(d), d=xy, l i ne(r), bal l (B), cent r e(B,x), r adi us

(B,r), set ('Bc'), 'Bc'=Bc, x� B, d� r  �   y� 'Bc' ”

Functions
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Rule 23. Apply function.

Rule 22. Composed function - apply.

Rule 25. f(x)=1/x -

apply.

Rule 24. f(x)=1/x -

recognise.



Rule 26. function addition: f unct i on(f), f unct i on(g), f unct i on('f+g'), 'f+g'=f+g, poi nt

(x), poi nt (y), poi nt ('f(x)'), 'f(x)'=f(x),  poi nt ('g(x)'), 'g(x)'=g(x), y='f+g'(x)  �   y='f(x)'+'g(x)'

Rule 27. function multiplication: f unct i on(f), f unct i on(g), f unct i on('f+g'), 'f.g'=f.g,

poi nt (x), poi nt (y), poi nt ('f(x)'), 'f(x)'=f(x), poi nt ('g(x)'), 'g(x)'=g(x), y='f.g'(x) � y='f

(x)'.'g(x)'

Conversions and soundness proofs

� (Rule 23) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X),

r ange(f,Y), poi nt (x), x� X  �   �  'f(x)' . poi nt ('f(x)'), 'f(x)'� Y, 'f(x)'=f(x)”

� (Rule 22) = “eucl i dean-space(X), eucl i dean-space(Y), eucl i dean-space(Z), f unct i on

(f), domai n(f,X), r ange(f,Y), f unct i on(g), domai n(g,Y), r ange(g,Z), f unct i on('gof'),

domai n('gof',X), r ange('gof',Z), 'gof'=gof, poi nt (x), x� X, poi nt (y), y� Y, poi nt (z), z� Z,

poi nt (a), a� Z, 

y=f(x), z=g(y), a='gof'(x)  �   a=z”

� (Rule 25) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� )� f unct i on(f), r ange(f,X), domai n

(f,Y), f=1/x, poi nt (x), x� X, poi nt (y), y� Y, y=f(x)  �   �  A . ar ea-bl ock(A), A=x.y, A=1”

Where 1/x is the constant denoting the function f:(0,� )® (0,� ), f(x)=1/x. 

True, since # x� 0,� x.1/x=1.

� (Rule 24) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� )� f unct i on(f), r ange(f,X), domai n

(f,Y), f=1/x, poi nt (x), x� X, poi nt (y), y� Y, ar ea-bl ock('1'), '1'=1  �   y=f(x)”

True since x.y=1  �   y=1/x.

Rule 26: Trivial.
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Rule 29. Constant function - apply.Rule 28. Identity function

- apply.



Rule 27: Trivial.

� (Rule 28) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� )� f unct i on(f), r ange(f,X), domai n

(f,Y), f=i dent i t y, poi nt (x), x� X, poi nt (y), y� Y, y=f(x)  �   y=x”

� (Rule 29) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� )� point(c), c� Y, f unct i on(f), r ange

(f,X), domai n(f,Y), f=const ant (c), poi nt (x), x� X, poi nt (y), y� Y, y=f(x)  �   y=c”

Lines

Rule 33. Line equality (an implicit inference rule): “poi nt (a), poi nt (b), l i ne(X), l i ne(Y),

X=ab, Y=ab �   X=Y”

Conversions and soundness proofs

We associate lines with the metric function of the space, i.e. if L=ab, then L represents |a-b|

(which also means L=ba). This is implicitly true for the Euclidean spaces we use in

drawing, and a visual representational device in other spaces. Note that this association

would preclude the use of Euclidean line reasoning (which we have not covered in this

project) unless the space is known to be Euclidean. Note: the actual Dr.D add_line rule is false – it allows lines to be drawn between spaces by the creation of union/intersection sets across spaces.

� (Rule 30) = “eucl i dean-space(X), poi nt (a), poi nt (b), a� X, b� X � � L . l i ne(L),

L=ab”

True, since X by definition has a metric (a,b)® |a-b| that maps any pair of points to a

positive number and is symmetric.

� (Rule 32) = “eucl i dean-space(X), poi nt (a), poi nt (b), a� X, b� X � � L . l i ne(L),

L=ab=ba”
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Rule 30. Line - draw. Rule 31. Triangle rule.Rule 32. Convert line to point.



� (Rule 31) = “poi nt (x), poi nt (y), poi nt (z), l i ne('xy'), l i ne('yz'), l i ne('xz'), 'xy'=xy,

'yz'=yz, 'xz'=xz, poi nt ('xy+yz'), 'xy+yz'=xy+yz  �   'xy+yz' �  xz”

This is one of the standard axioms for a metric.

Rule 33: Trivial.

12.2.2 Properties

Open

Conversions and soundness proofs

� (Rule 34) = “set (X), open(X), poi nt (x), x� X � � e,B . l i ne(e), e>0, bal l (B), cent r e

(B,x), r adi us(B,e), B� X”  

Rule 35 (Open - recognise.): Soundness proof

Let Rule 35 = R:T1-s-T2-f-T3 � T' 

� (T1) = “set (X)”

� (T2) = “set (X), poi nt (x), x� X”

� (T3) = “set (X), poi nt (x), x� X, l i ne(e), e>0, bal l (B), cent r e(B,x), r adi us

(B,e), x� B� B� X”

� (T') = “set (X), open(X)”

Suppose R is not sound.

�   �  reasoning trees D, D' in EDDLA such that D0 is consistent, D was drawn

from D0 using sound rules D, D R� D', but D' is inconsistent.
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Rule 34. Open - apply.
Rule 35. Open - recognise.



Let T� m� D. Without loss of generality, let the object labels in m(T)� D be the

same as those in T and assume x', B' are not used as object labels in D.

Let D=t ar get (R,D) and D' = R(D).

D consistent, D' inconsistent �  D consistent, D' inconsistent (since all other

branches of D, if any, are unchanged by the application of R and must therefore

have been inconsistent already).

D R� D' �  changes(D,D')={ � ,{ x,e,B} ,{ open(X)} ,� }  (that is, the point, the ball

and its radial line are deleted, and the relation open(X) is added to diagram D')

D drawn using sound rules  �   D is consistent. Hence the statement open(X)

must be inconsistent with D.

Let M(D) be a model for D with the same object labels. 

open(X) inconsistent �  � x'� M such that � e'>0, not (Be'(x')� X).

Let A be the reasoning program D[x'/x]. But then by Lemma 6, the drawing of A

is verified by D in the same way as for D (creating e'' in the process). Hence

t ar get (R,A) has Be''(x')� X, e''>0. 

D sound �  A is consistent, so Be''(x')� X. 

This is a contradiction, hence R is sound as required.

Closed

Because of DDLA's limited sequence reasoning abilities, we use the topological definition

of a closed set (which is equivalent to the normal euclidean space definition for

euclidean-spaces).
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Rule 37. Closed - apply. Rule 36. Closed - recognise.



Conversions

� (Rule 37) = “eucl i dean-space(X), set (Y), set ('Yc'), 'Yc'=Yc, cl osed(Y) �   open('Yc')”

� (Rule 36) = “eucl i dean-space(X), set (Y), set ('Yc'), 'Yc'=Yc, open('Yc')  �   cl osed(Y)”

Order (<)

Conversions

� (Rule 38) = “ l i ne(X), l i ne(Y) �   Y>X  or   X=Y  or   X>Y ”

Continuity
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Rule 38. Compare lengths.

Rule 39. Continuity - apply.

Rule 40. Continuity - recognise.



Conversions and soundness proofs

� (Rule 39) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X),

r ange(f,Y), cont i nuous(f), poi nt (x), x� X, poi nt (y), y� Y, y=f(x), l i ne(e), e>0, bal l (B),

B� Y, cent r e(B,y), r adi us(B,e) � � d,C,D . l i ne(d), d>0, bal l (C), C� X, cent r e(C,x),

r adi us(C,d), set (D), D� B, D=f(C)”

Rule 40 (Continuity - recognise.): Soundness proof

Let Rule 40 = R:T1-s-T2-f-T3 � T' 

� (T1) = “eucl i dean- space(X), eucl i dean- space(X), f unct i on(f), domai n(f,X),

r ange(f,Y)”

� (T2) = � (T1), “poi nt (x), x� X, poi nt (y), y� Y, y=f(x), l i ne(e), e>0, bal l (B),

B� Y, cent r e(B,y), r adi us(B,e)”

� (T3) = � (T2), “ l i ne(d), d>0, bal l (C), C� X, cent r e(C,x), r adi us(C,d), set ('f

(C)'), 'f(C)'� B, 'f(C)'=f(C)”

� (T') = � (T2), “cont i nuous(f)”

Suppose R is not sound. As with Rule 35, this implies �  reasoning trees D, D' in

EDDLA such that D0 is consistent, D was drawn from D0 using sound rules D, D
R� D', but D' is inconsistent.

�  the statement cont i nuous(f) must be inconsistent with D.

Let M be a model for D with the same object labels.

cont i nuous(f) inconsistent �  � x',e� M (and also, y'=f(x'), B'=Be'(y')) such that

x'� X, e'>0 and # d'>0, not (f(Bd'(x'))� B').

Let A be the reasoning program D[x'/x,e'/e,y'/y,B'/B]. But then by Lemma 6, the

drawing of A is verified by D in the same way as for D (creating a suitable d').

Hence t ar get (R,A) has Bd'(x')� B'. 

D sound �  A is consistent, so Bd'(x')� B',  which is a contradiction, hence R is

sound as required.
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Surjective

Conversions and soundness proofs

� (Rule 41) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X),

r ange(f,Y), sur j ect i ve(f), poi nt (y), y� Y  �   �  x . poi nt (x), x� X, f(x)=y”

Decreasing

Conversions and soundness proofs

� (Rule 42) = “1d-set (X), 1d-set (Y), f unct i on(f), r ange(f,X), domai n(f,Y), poi nt (x), x� X,

poi nt (y), y� X, poi nt ('f(x)'), 'f(x)'� Y, poi nt ('f(y)'), 'f(y)'� Y, 'f(x)'=f(x), 'f(y)'=f(y),

decr easi ng(f), y>x  �   'f(x)'>'f(y)' ”

Supremum

Rule 43: 1d- set (R), 1d-set (X), X� R, poi nt (x), x� R sup(X,x)  �   upper _bound(X,x)

Rule 44: sup(X,x), upper _bound(X,y) �  y� x 

Rule 45: 1d- set (X), poi nt (x), upper _bound(X,x), poi nt (y), y� X �   x� y

244

Rule 42. Decreasing - apply.

Rule 41. Surjective - apply.



Soundness

Rule 43, Rule 44 and Rule 45 are standard definitions.

Convergence

Conversions and soundness proofs

Recall that we interpret relations involving sequences as applying only to the head of the

sequence (e.g. for xn=1,2,3,4... we would say xn>1 is true).

� (Rule 46) = “eucl i dean-space(X), eucl i dean-space(Y), f unct i on(f), domai n(f,X),

r ange(f,Y),  sequence(xn), xn� X  �   �  'f(xn)' . sequence('f(xn)'), 'f(xn)'� Y, f(xn)='f(xn)'”

� (Rule 47) = “poi nt (x), sequence(xn), xn® x, l i ne(e), e>0, bal l (B), cent r e(B,x), r adi us

(B,e), x� B  �   xn� B”

Rule 48 (Convergent - recognise.): Soundness proof

Let Rule 48 = R:T1-s-T2-f-T3 � T' 
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Rule 46. Apply function.
Rule 47. Convergent -

apply.

Rule 48. Convergent - recognise.



� (T1) = “poi nt (x), sequence(xn)”

� (T2) = � (T1), “ l i ne(e), e>0, bal l (B), cent r e(B,x), r adi us(B,e), x� B”

� (T3) = � (T2), “xn� B”

� (T') = “poi nt (x), sequence(xn), xn® x”

Suppose R is not sound. As with Rule 35, this implies �  reasoning trees D, D' in

EDDLA such that D0 is consistent, D was drawn from D0 using sound rules D, 

D R� D', but D' is inconsistent.

�  the statement xn® x must be inconsistent with D.

Let M be a model for D with the same object labels.

xn® x inconsistent �  � e'>0, not (xn� Be'(x))

Let A be the reasoning program D[e'/e]. But then by Lemma 6 (c.f. §5.2.2), the

drawing of A is verified by D in the same way as for D Hence t ar get (R,A) has

xn� Be'(x) 

D sound �  A is consistent, so xn� Be'(x). 

This is a contradiction, hence R is sound as required.

Arithmetic

Rule 53: (a+b).c = a.c + b.c

Rule 54: |x-y| �  |x-y|=x-y, x>y  or  |x-y|=y-x, y<x  or  |x-y|=0, x=y

Rule 55: a+b=c  �   b+a=c

Rule 56: 0+a=b  �   a=b
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Rule 49. multiply.

Rule 50. multiply –

commutative / rotate

preserves area. Rule 52. subtraction /

Convert point to line.

Rule 51. Number line - exists.



Conversions

� (Rule 49) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� ), poi nt (x), x� X, poi nt (y), y� Y �

�  A . ar ea-bl ock(A), A=x.y”

� (Rule 50) = “1d-set (X), X=(0,� ), 1d-set (Y), Y=(0,� ), poi nt (x), x� X, poi nt (y), y� Y �

� A . ar ea-bl ock(A), A=x.y, poi nt (z), z� X, poi nt (a), a� Y, z=y, a=x � � B .

ar ea-bl ock(B), B=A”

� (Rule 52) = “1d-set (X), poi nt (x), x� X, poi nt (y), y� X, y� x � � '|y-x|' . 1d- set ('|y-x|'),

end-poi nt s('|y-x|',{ x,y} ), y=x+'|y-x|' ”

� (Rule 51) = “ �   �  X,x . 1d-set(X), X=(0,� ), poi nt (x), x=0”

Rule 53 is a standard axiom.

Rule 54 is trivial.

Rule 55 and Rule 56 are standard axioms.

Logic

Rule 57. Exists/not-exists: “X  �   � X  or  not (� X)”

Rule 58. Fix object: “X  �   speci f i c(X)”

Soundness

Rule 57: Trivial.

Rule 58: c.f. §5.2.2.

Rule 59: c.f. §5.2.2.
Alan: A short summary here?  ??  
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Rule 59. Merge cases.
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Appendix B: Sequence Reasoning

Example

This appendix presents an example proof requiring reasoning with sequences. This proof

illustrates the diagrammatic sequence reasoning method proposed in §8.2.5. The theorem we

consider is: X closed under sequence convergence � Xc open. Clearly, any proof of this

theorem must involve reasoning with sequences.

Our proof will use proof-by-contradiction, with the following two rules to define 'not open':

1) not (open(A)) �  �  a� A . bor der -poi nt (a)

2) a� A, bor der -poi nt (a), Br(a), r>0 �  �  b� Br(a), b� A

X closed under sequence convergence ����  Xc open

Proof

Assume false.

�   �   X closed, Xc not open

�   �  y� Xc . bor der -poi nt (y), as shown in Figure 13.1

We now construct the first few terms of a sequence, as shown in Figure 13.3.
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Figure 13.1. Closed X and Xc.



The sequence of steps

1) Given a diagram D matching Diagram 2 above, let r' = ½r and draw Br'(y) 

2) r'>0

3) Find x' such that x'� Br'(y), x'� X, giving diagram D'

can be repeated indefinitely. This can be verified automatically by checking that

D� D' with the 'old objects' mapping to the 'new objects' (i.e. under the mapping

[r® r', Br(y)® Br'(y), x® x']). Thus this sequence of steps defines a sequence of

lengths, balls and points.�

From Figure 13.2, we now extract a 'sequence generator redraw rule' R:Dn� Dn+1

(Figure 13.3).
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From this, we can see that xn'� Brn
(y) # n'>n (using the transitivity of � ), and that

rn=2-n (using a trivial proof by induction).

Thus, using the lemma e>0 �   � N� �  . 2-N <e, we can prove xn® y, as shown in

Figure 13.4 (c.f. §12.2.2, Rule 48 for the redraw rule definition of convergence).

Hence xn® y, and X closed under sequence convergence �  y� X. 

This contradicts y� Xc, so we are done.
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Figure 13.3. Sequence generator rule.

Figure 13.4. Proving the sequence converges to y.
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Appendix C: Some Example Proofs

This appendix presents three example proofs. §4.1 shows another proof, and a larger set of

example proofs is included on the CD-ROM. As discussed in §4.1.1, these proofs are better

suited to a dynamic presentation (e.g. on computer) than static paper representations, so we

recommend viewing the CD-ROM version where possible.

14.1 Nested balls lemma
This is a short proof for a simple lemma: e� d �  Bd(x)� Be(x), which is stated in Figure 14.1.

14.1.1 Proof

The proof has 5 steps, and involves 6 diagrams.

D1: We start with the theorem antecedent.
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Figure 14.1. Lemma statement.



D2: We then apply the “Draw a point” rule (taken from the antecedent of Rule 1) to create

an arbitrary point y� Bd(x). We will need to show that y� Be(x) – which is currently marked

as unknown.

D3: We start by considering the distance from y to x (using Rule 30)

D4: Now y� Bd(x)  �   e1 = |x-y| < d (Rule 20, half of the open ball definition).
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Figure 14.4. D3.

Figure 14.2. D1.

Figure 14.3. D2.



D5: e > |x-y| � y� Be(x) (using Rule 21 – the other half of the ball definition – with e� d,

d>e1 to get e > e1=|x-y|).

D6: Given an arbitrary point y� Bd(x), we have now shown that y� Be(x). Hence Bd(x)� Be(x)

(using Rule 1). The theorem consequent will now match diagram D6, so we have reached

the end of the proof.

14.2 Open set union
Figure 14.8 shows the theorem statement: Given sets Y, Z, Y� Z such that open(Y), open(Z)

then open(Y� Z).
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Figure 14.7. D6.

Figure 14.5. D4.

Figure 14.6. D5.



14.2.1 Proof

Figure 14.9 shows the structure of the proof program for this theorem, which involves a

case-split.

D1: The proof starts with the theorem antecedent.

D2: We draw an arbitrary point in Y� Z.
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Figure 14.8. The theorem

statement.

Figure 14.9. The structure of the proof program.

Figure 14.10. Diagram D1.



D3a and D3b: Applying the branch rule “Set union definition” , we split into two cases: x� Y

or x� Z.

D4a and D4b: We now work separately (but in this proof, identically) on the two cases. In

both cases, we can use the rule “Open set – apply definition” to draw balls of radius e

contained in Y� Z.
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Figure 14.11. Diagram D2.

Figure 14.12. Diagram D3a and D3b.

Figure 14.13. Diagram D4a and D4b.



D5a and D5b: In both cases, the rule “Open set – recognise” can now be applied. This is an

animated rule, and its antecedent matches diagrams D1, D2, D4a (creating D5a), and D2,

D3, D4b (creating D5b).

D6: Applying the meta-rule mer ge, we draw the two cases back together to reach the

theorem consequent.

This completes the proof, as the system will confirm (Figure 14.16).
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Figure 14.15. Diagram D6.

Figure 14.14. Diagram D5a and D5b.



14.3 A theorem about continuity
Figure 14.17 shows the theorem statement: Given euclidean spaces X, Y, continuous

function f:X® Y, sets Z� Y such that open(Z), and f-1(Z)� X, then we have open(f-1(Z)). This

theorem can also be stated as “metric space continuity � topological continuity” , given the

appropriate definitions.
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Figure 14.16. Dr.Doodle screenshot showing the verified proof.



14.3.1 Proof

The proof involves a chain of 10 diagrams.

D1: The proof starts with the theorem antecedent.

D2: We draw an arbitrary point in f-1(Z).
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Figure 14.17. The theorem statement.

Figure 14.18. Diagram D1.



D3: Apply f to x to get y� Y, y=f(x). An implicit inference gives us y� Z (since x� f-1(Z))

D4: Y is open, hence we can use 'Open set – apply definition' to create an e -ball inside Y.

D5: We now apply the rule defining continuous functions to find a d-ball about x in X such

that f(Bd(x))� Be(f(x)). We draw this d-ball inside f-1(Z) – but this relation has not been

proved yet, so the system adds an appropriate unknown statement.
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Figure 14.19. Diagram D2.

Figure 14.20. Diagram D3.

Figure 14.21. Diagram D4.



D6: We want to show that Bd(x) is indeed always inside f-1(Z) (note how the unknown

statement helps guide the proof here), which we do by showing each point of Bd(x) is a

member of f-1(Z). The first step is to consider an arbitrary point z� Bd(x).

D7: Then apply f to z, creating a point inside f(Bd(x)).

D8: We now use the inverse function definition to say that f(z)� Z � z� f-1(Z), eliminating

one of our unknown statements.
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Figure 14.22. Diagram D5.

Figure 14.23. Diagram D6.

Figure 14.24. Diagram D7.



D9: We have now shown that any point in Bd(x) is also in f -1(Z). The animated rule

“Recognise set inside” will match diagrams D5, D6 and D8, adding the relation Bd(x)� f-1(Z)

(i.e. removing the 'unknown' statement).

D10: We have now constructed a ball inside f -1(Z) around the arbitrary point x. This means

we can apply the “Recognise open set” rule (matching diagrams D1, D2 and D9) to deduce

that f 
-1(Z) is open as required. This concludes the proof.
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Figure 14.25. Diagram D8.

Figure 14.26. Diagram D9

Figure 14.27. Diagram D10.


